Home
Class 12
MATHS
Differentiate tan^(-1){sqrt((1-cosx)/(1+...

Differentiate `tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi ltx lt pi` with respect to `x` :

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the inverse tangent: \[ y = \tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right) \] We know that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \quad \text{and} \quad 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the argument: \[ \frac{1 - \cos x}{1 + \cos x} = \frac{2 \sin^2\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} = \tan^2\left(\frac{x}{2}\right) \] Therefore, we have: \[ y = \tan^{-1}\left(\sqrt{\tan^2\left(\frac{x}{2}\right)}\right) = \tan^{-1}\left|\tan\left(\frac{x}{2}\right)\right| \] ### Step 2: Determine the Sign of \( \tan\left(\frac{x}{2}\right) \) In the interval \( -\pi < x < \pi \): - For \( -\pi < x < 0 \), \( \tan\left(\frac{x}{2}\right) < 0 \) - For \( 0 < x < \pi \), \( \tan\left(\frac{x}{2}\right) > 0 \) Thus, we can express \( y \) as: \[ y = \begin{cases} -\frac{x}{2} & \text{if } -\pi < x < 0 \\ \frac{x}{2} & \text{if } 0 < x < \pi \end{cases} \] ### Step 3: Differentiate the Piecewise Function Now we differentiate \( y \) for each case: 1. For \( -\pi < x < 0 \): \[ \frac{dy}{dx} = -\frac{1}{2} \] 2. For \( 0 < x < \pi \): \[ \frac{dy}{dx} = \frac{1}{2} \] ### Step 4: Check Differentiability at \( x = 0 \) At \( x = 0 \), we need to check the left-hand limit (LHL) and right-hand limit (RHL): - LHL: \[ \lim_{x \to 0^-} \frac{y - 0}{x - 0} = \lim_{x \to 0^-} \frac{-\frac{x}{2}}{x} = -\frac{1}{2} \] - RHL: \[ \lim_{x \to 0^+} \frac{y - 0}{x - 0} = \lim_{x \to 0^+} \frac{\frac{x}{2}}{x} = \frac{1}{2} \] Since LHL \( \neq \) RHL, the function is not differentiable at \( x = 0 \). ### Final Result Thus, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \begin{cases} -\frac{1}{2} & \text{if } -\pi < x < 0 \\ \frac{1}{2} & \text{if } 0 < x < \pi \end{cases} \] And the function is not differentiable at \( x = 0 \).

To differentiate the function \( y = \tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right) \) with respect to \( x \), we will follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the inverse tangent: \[ y = \tan^{-1}\left(\sqrt{\frac{1 - \cos x}{1 + \cos x}}\right) \] We know that: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))} with respect to x :

Differentiate tan^(-1){sqrt((1+sinx)/(1-sinx))},\ -pi/2

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1){(cosx)/(1+sinx)},\ 0 le x le pi

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

Differentiate tan^(-1){sqrt((1+cosx)/(1-cosx))} with respect to x 0lt x lt pi

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^(-1){(1-cosx)/(sinx)},\ -pi

Differentiate tan^(-1){ (sinx) / (1+cosx) } with respect to x