Home
Class 12
MATHS
Differentiate tan^(-1)(secx+tanx),(-pi)/...

Differentiate `tan^(-1)(secx+tanx),(-pi)/(2) lt x lt (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}(\sec x + \tan x) \), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \tan^{-1}(\sec x + \tan x) \] To differentiate \( y \) with respect to \( x \), we apply the chain rule: \[ \frac{dy}{dx} = \frac{1}{1 + (\sec x + \tan x)^2} \cdot \frac{d}{dx}(\sec x + \tan x) \] ### Step 2: Differentiate \( \sec x + \tan x \) Next, we need to differentiate \( \sec x + \tan x \): \[ \frac{d}{dx}(\sec x + \tan x) = \frac{d}{dx}(\sec x) + \frac{d}{dx}(\tan x) \] Using the derivatives: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \quad \text{and} \quad \frac{d}{dx}(\tan x) = \sec^2 x \] Thus, \[ \frac{d}{dx}(\sec x + \tan x) = \sec x \tan x + \sec^2 x \] ### Step 3: Substitute back into the derivative Now we substitute this result back into our derivative: \[ \frac{dy}{dx} = \frac{1}{1 + (\sec x + \tan x)^2} \cdot (\sec x \tan x + \sec^2 x) \] ### Step 4: Simplify the expression We know that: \[ 1 + \tan^2 x = \sec^2 x \] Thus, we can express \( 1 + (\sec x + \tan x)^2 \) as: \[ 1 + (\sec x + \tan x)^2 = 1 + \sec^2 x + 2\sec x \tan x + \tan^2 x = 1 + \sec^2 x + \tan^2 x + 2\sec x \tan x \] Using \( 1 + \tan^2 x = \sec^2 x \): \[ = \sec^2 x + \sec^2 x + 2\sec x \tan x = 2\sec^2 x + 2\sec x \tan x \] Thus, we can write: \[ \frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{2\sec^2 x + 2\sec x \tan x} \] ### Step 5: Factor out common terms Factoring out the common terms in the denominator: \[ \frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{2(\sec^2 x + \sec x \tan x)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{2} \] ### Final Result Thus, the derivative of \( y = \tan^{-1}(\sec x + \tan x) \) is: \[ \frac{dy}{dx} = \frac{1}{2} \]

To differentiate the function \( y = \tan^{-1}(\sec x + \tan x) \), we will follow these steps: ### Step 1: Differentiate the function We start with the function: \[ y = \tan^{-1}(\sec x + \tan x) \] To differentiate \( y \) with respect to \( x \), we apply the chain rule: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)(secx+tanx) , -pi/2

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Evaluate: int tan^(-1)(secx+tanx)dx , -pi/2 < x < pi/2

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate the following functions with respect to x : tan^(-1)(secx+tanx),-pi/2ltxltpi /2

Differentiate the following functions with respect to x : tan^(-1)(secx+tanx),-pi/2ltxltpi /2

Differentiate tan^(-1){(cosx)/(1+sinx)},\ 0 le x le pi

Differentiate tan^(-1)((a+x)/(1-a x)) with respect to x

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi ltx lt pi with respect to x :

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to x