Home
Class 12
MATHS
y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sq...

`y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let ` y =sec^(-1)((1)/(4x^(3)-3x))"....."(i)`
On putting `x = costheta` in Eq. ( i), we get
`y = sec^(-1)(1)/(4cos^(3)theta-3costheta)`
`= sec^(-1)'(1)/(cos3theta)`
`= sec^(-1)(se3 theta)= 3 theta`
`= 3 cos^(-1)x [:' theta = cos^(-1)x]`
`:. (dy)/(dx) = (d)/(dx) (3cos^(-1)x)`
` = 3.(-1)/(sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), ="" then="" find="" (dy)/(dx)

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

If y=sec^(-1)(1/(2x^2-1));0

Differentiate sec^(-1)(1/(2x^2-1)),\ 0

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),0ltxlt1, prove that (dy)/ (dx)="4/(1+x^2)