Home
Class 12
MATHS
Differentiate tan^(-1)((3a^2x-x^3)/(a^3-...

Differentiate `tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) \), we can follow these steps: ### Step 1: Substitute \( x \) with \( a \tan(\theta) \) Let \( x = a \tan(\theta) \). Then, we can express \( y \) in terms of \( \theta \). ### Step 2: Rewrite the function Substituting \( x = a \tan(\theta) \) into the function gives: \[ y = \tan^{-1}\left(\frac{3a^2(a \tan(\theta)) - (a \tan(\theta))^3}{a^3 - 3a(a \tan(\theta))^2}\right) \] This simplifies to: \[ y = \tan^{-1}\left(\frac{3a^3 \tan(\theta) - a^3 \tan^3(\theta)}{a^3 - 3a^3 \tan^2(\theta)}\right) \] ### Step 3: Simplify the expression Factoring out \( a^3 \) from the numerator and denominator: \[ y = \tan^{-1}\left(\frac{a^3(3 \tan(\theta) - \tan^3(\theta))}{a^3(1 - 3 \tan^2(\theta))}\right) \] This simplifies to: \[ y = \tan^{-1}\left(\frac{3 \tan(\theta) - \tan^3(\theta)}{1 - 3 \tan^2(\theta)}\right) \] ### Step 4: Use the tangent triple angle formula We know that: \[ \tan(3\theta) = \frac{3 \tan(\theta) - \tan^3(\theta)}{1 - 3 \tan^2(\theta)} \] Thus, we can rewrite \( y \): \[ y = \tan^{-1}(\tan(3\theta)) = 3\theta \] ### Step 5: Substitute back for \( \theta \) Since \( \theta = \tan^{-1}\left(\frac{x}{a}\right) \), we have: \[ y = 3 \tan^{-1}\left(\frac{x}{a}\right) \] ### Step 6: Differentiate with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 3 \cdot \frac{d}{dx}\left(\tan^{-1}\left(\frac{x}{a}\right)\right) \] Using the derivative of \( \tan^{-1}(u) \): \[ \frac{d}{dx}\left(\tan^{-1}(u)\right) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{x}{a} \), thus \( \frac{du}{dx} = \frac{1}{a} \). ### Step 7: Final differentiation Now substituting back: \[ \frac{dy}{dx} = 3 \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \frac{1}{a} \] This simplifies to: \[ \frac{dy}{dx} = \frac{3}{a(1 + \frac{x^2}{a^2})} = \frac{3}{a\left(\frac{a^2 + x^2}{a^2}\right)} = \frac{3a}{a^2 + x^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{3a}{a^2 + x^2} \]

To differentiate the function \( y = \tan^{-1}\left(\frac{3a^2x - x^3}{a^3 - 3ax^2}\right) \), we can follow these steps: ### Step 1: Substitute \( x \) with \( a \tan(\theta) \) Let \( x = a \tan(\theta) \). Then, we can express \( y \) in terms of \( \theta \). ### Step 2: Rewrite the function Substituting \( x = a \tan(\theta) \) into the function gives: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

Differentiate tan^(-1){(5x)/(1-6\ x^2)} , -1/(sqrt(6))ltxlt1/ (sqrt(6)) with respect to x

Differentiate the following functions with respect to x : tan^(-1)((3a^2x-x^3)/(a^3-3a x^2))

Differentiate the following functions with respect to x : tan^(-1)((3a^2x-x^3)/(a^3-3a x^2))

If -1/(sqrt(3)) < x < 1/(sqrt(3)) , differentiate tan^(-1)((3x-x^3)/(1-3x^2)) with respect to tan^(-1)((2x)/(1-x^2)) .

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate wrt x : (x+1)(2x-3)