Home
Class 12
MATHS
y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))...

`y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))," where "-1ltxlt1, xne0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

Let, `tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))], -1ltxlt1, x ne 0`
Put `x^(2)=cos2theta`
`:. y = tan^(-1)'((sqrt(1+cos2theta)+sqrt(1-cos2theta))/(sqrt(1+cos2theta)-sqrt(1-cos2theta)))`
`=tan^(-1)((sqrt(1+2cos^(2)theta-1)+sqrt(1-1+2sin^(2)theta))/(sqrt(1+2cos^(2)theta-1)-sqrt(1-1+2sin^(2)theta)))`
`= tan^(-1)'((sqrt(2)costheta+sqrt(2)sintheta)/(sqrt(2)costheta-sqrt(2)sin theta))= tan^(-1)[(sqrt(2) (costheta+sintheta))/(sqrt(2)(costheta-sintheta))]`
` =tan^(-1)((costheta+sintheta)/(costheta-sintheta))=tan^(-1)'(((costheta+sintheta)/(costheta))/((costheta-sintheta)/(costheta)))`
`= tan^(-1)'((1+tantheta)/(1-tantheta))`
`= tan^(-1)((1+tantheta)/(1-tantheta))`
`= tan^(-1)tan'((pi)/(4)+theta), [:'tan(a+b)=(tana+tanb)/(1-tana.tanb)]`
`= (pi)/(4)+theta = (pi)/(4)+(1)/(2)cos^(-1)x^(2) , [:' 2theta=cos^(-1)x^(2) rArr theta = (1)/(2) cos^(-1) x^(2)]`
`:. (dy)/(dx) = (d)/(dx)(pi/4)+(d)/(dx)(1/2 cos^(-1)x^(2))`
`= 0+(1)/(2).(-1)/(sqrt(1-x^(4))).(d)/(dx)x^(2)=(1)/(2).(-2x)/(sqrt(1-x^(4)))= (-x)/(sqrt(1-x^(4)))`.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e r e -1

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),w h e r e -1

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is