Home
Class 12
MATHS
Find (dy)/(dx),w h e n x=e^(theta)(thet...

Find `(dy)/(dx),w h e n` `x=e^(theta)(theta+1/theta)a n dy=e^(-theta)(theta-1/theta)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`:. x = e^(theta)(theta+(1)/(theta))` and `y=e^(-theta)(theta-(1)/(theta))`
`:. (dx)/(d theta) = (d)/(d theta)[e^(theta).(theta+(1)/(theta))]`
`=e^(theta).(d)/(d theta)(theta+(1)/(theta))+(theta+(1)/(theta)).(d)/(d theta)e^(theta)`
`=e^(theta)(1-(1)/(theta^(2)))+(theta+(1)/(theta))e^(theta)`
`=e^(theta)(1-(1)/(theta^(2))+theta+1/(theta))`
`=e^(theta)((theta^(2)-1+theta^(3)+theta)/(theta^(2)))"......"(i)`
and `(dy)/(d theta) = (d)/(d theta) [e^(-theta).(theta-(1)/(theta))]`
`=e^(-theta).(d)/(d theta)(theta-(1)/(theta))+(d)/(d theta)e^(-theta)(theta-(1)/(theta))`
`=e^(-theta)(1+(1)/(theta^(2)))+(theta-(1)/(theta))e^(-theta).(d)/(d theta)(-theta)`
`=e^(-theta)[(theta^(2)+1)/(theta^(2))-(theta^(2)-1)/(theta)]=e^(-theta)[(theta^(2)+1-theta^(3)+theta)/(theta^(2))]"....."(ii)`
`:. (dy)/(dx) = (dy//d theta)/(dx// d theta) = (e^(-theta)((theta^(2)+1-theta^(3)+theta)/(theta^(2))))/(e^(theta)((theta^(2)-1+theta^(3)+theta)/(theta^(2))))`
`=e^(-2theta)((-theta^(3)+theta^(2)+theta+1)/(theta^(3)+theta^(2)+theta-1))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when x=e^(theta)(theta+1/theta) and y=e^(-theta)(theta-1/theta)

Find (dy)/(dx), when x=a e^(theta)(sintheta-costheta),y=a e^(theta)(sintheta+costheta)

Find (dy)/(dx), when x=a(theta+sintheta)a n dy=a(1-costheta)

Find (dy)/(dx) , if x=a(theta+sintheta), y=1(1-costheta) .

"Find "(dy)/(dx) if x =a(theta- sin theta) and y= a (1- cos theta).

Find (dy)/(dx)ifx=a(theta-sintheta)a n dy=a(1-costheta)dot

Find (dy)/(dx) when x = a sec theta and y = b tan theta

Find (dy)/(dx)ifx=a(theta-sintheta) and y=a(1-costheta)dot

Find (dy)/(dx) , when x=b\ sin^2theta and y=a\ cos^2theta

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta