Home
Class 12
MATHS
x=(1+logt)/(t^(2)), y=(3+2logt)/(t)...

`x=(1+logt)/(t^(2)), y=(3+2logt)/(t)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`:' x = (1+logt)/(t^(2))` and `y = (3+2logt)/(t)`
` :. (dx)/(dt) = (t^(2).(d)/(dt)(1+logt)-(1+logt).(d)/(dt)t^(2))/((t^(2))^(2))`
`=(t^(2).(1)/(t)-(1+logt).2t)/(t^(4))= (t-(1+logt).2t)/(t^(4))`
`= (t)/(t^(4)) [1-2(1+logt)]= (-1-2logt)/(t^(3))"...."(i)`
`=(t.2.(1)/(t)-(3+2logt).t)/(t^(2))`
and `(dy)/(dt) = (t.(d)/(dt)(3+2logt)-(3+2logt).(d)/(dt)t)/(t^(2))`
`= (t.2.(1)/(t)-(3+2 logt).1)/(t^(2))`
`= (2-3-2logt)/(t^(2))= (-1-2logt)/(t^(2))"....."(ii)`
`:. (dy)/(dx)= (dy//dt)/(dx//dt) = (-1-2logt//t^(2))/(-1-2logt//t^(3)) = t`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

The area (in sq. units) enclosed between the curve x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)), AA t in R and the line y=x+1 above the line is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

Area enclosed by the curve y=f(x) defined parametrically as x=(1-t^2)/(1+t^2), y=(2t)/(1+t^2) is equal

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

The conic having parametric representation x=sqrt3(1-t^(2)/(1+t^(2))),y=(2t)/(1+t^(2)) is

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

Find the equation of tangent and normal to the curve x=(2a t^2)/((1+t^2)),y=(2a t^3)/((1+t^2)) at the point for which t=1/2dot

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is