Home
Class 12
MATHS
If x= e^(cos2t) and y = e^(sin2t), the...

If `x= e^(cos2t)` and `y = e^(sin2t)`, then prove that `(dy)/(dx) = -(ylogx)/(xlogy)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = -\frac{y \log x}{x \log y}\) given \(x = e^{\cos 2t}\) and \(y = e^{\sin 2t}\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) 1. **Differentiate \(x\)**: \[ x = e^{\cos 2t} \] Using the chain rule: \[ \frac{dx}{dt} = e^{\cos 2t} \cdot \frac{d}{dt}(\cos 2t) = e^{\cos 2t} \cdot (-\sin 2t) \cdot 2 = -2 \sin 2t \cdot e^{\cos 2t} \] 2. **Differentiate \(y\)**: \[ y = e^{\sin 2t} \] Similarly, using the chain rule: \[ \frac{dy}{dt} = e^{\sin 2t} \cdot \frac{d}{dt}(\sin 2t) = e^{\sin 2t} \cdot \cos 2t \cdot 2 = 2 \cos 2t \cdot e^{\sin 2t} \] ### Step 2: Find \(\frac{dy}{dx}\) Using the relationship \(\frac{dy}{dx} = \frac{dy/dt}{dx/dt}\): \[ \frac{dy}{dx} = \frac{2 \cos 2t \cdot e^{\sin 2t}}{-2 \sin 2t \cdot e^{\cos 2t}} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\cos 2t \cdot e^{\sin 2t}}{\sin 2t \cdot e^{\cos 2t}} \] ### Step 3: Substitute \(e^{\sin 2t}\) and \(e^{\cos 2t}\) Since \(y = e^{\sin 2t}\) and \(x = e^{\cos 2t}\), we can substitute these into our expression: \[ \frac{dy}{dx} = -\frac{\cos 2t \cdot y}{\sin 2t \cdot x} \] ### Step 4: Express \(\cos 2t\) and \(\sin 2t\) in terms of \(\log x\) and \(\log y\) From the definitions of \(x\) and \(y\): - Taking logarithms: \[ \log x = \cos 2t \quad \text{(since \(x = e^{\cos 2t}\))} \] \[ \log y = \sin 2t \quad \text{(since \(y = e^{\sin 2t}\))} \] ### Step 5: Substitute back into \(\frac{dy}{dx}\) Now substituting \(\cos 2t\) and \(\sin 2t\): \[ \frac{dy}{dx} = -\frac{\log x \cdot y}{\log y \cdot x} \] ### Conclusion Thus, we have shown that: \[ \frac{dy}{dx} = -\frac{y \log x}{x \log y} \] Hence proved.

To prove that \(\frac{dy}{dx} = -\frac{y \log x}{x \log y}\) given \(x = e^{\cos 2t}\) and \(y = e^{\sin 2t}\), we will follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) 1. **Differentiate \(x\)**: \[ x = e^{\cos 2t} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/(t^2) , then prove that (dy)/(dx)=1/(x^3y)

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If x = sin t , y = sin 2t , prove that (1-x^2)((dy)/(dx))^2=4(1-y^2)

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y