Home
Class 12
MATHS
If x = a sin2t(1+cos2t) and y =b cos 2...

If `x = a sin2t(1+cos2t)` and `y =b cos 2t(1-cos2t)`, then show that `((dy)/(dx))_(t=pi//4) = (b)/(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations for \( x \) and \( y \): \[ x = a \sin(2t)(1 + \cos(2t)) \] \[ y = b \cos(2t)(1 - \cos(2t)) \] We need to find \( \frac{dy}{dx} \) at \( t = \frac{\pi}{4} \) and show that it equals \( \frac{b}{a} \). ### Step 1: Differentiate \( x \) with respect to \( t \) Using the product rule, we differentiate \( x \): \[ \frac{dx}{dt} = a \left( \sin(2t) \cdot \frac{d}{dt}(1 + \cos(2t)) + (1 + \cos(2t)) \cdot \frac{d}{dt}(\sin(2t)) \right) \] Calculating the derivatives: - \( \frac{d}{dt}(1 + \cos(2t)) = -2 \sin(2t) \) - \( \frac{d}{dt}(\sin(2t)) = 2 \cos(2t) \) Substituting these back into the equation: \[ \frac{dx}{dt} = a \left( \sin(2t)(-2 \sin(2t)) + (1 + \cos(2t))(2 \cos(2t)) \right) \] Simplifying: \[ \frac{dx}{dt} = a \left( -2 \sin^2(2t) + 2 \cos(2t)(1 + \cos(2t)) \right) \] Factoring out the common terms: \[ \frac{dx}{dt} = 2a \left( \cos(2t)(1 + \cos(2t)) - \sin^2(2t) \right) \] ### Step 2: Differentiate \( y \) with respect to \( t \) Now we differentiate \( y \): \[ \frac{dy}{dt} = b \left( \cos(2t) \cdot \frac{d}{dt}(1 - \cos(2t)) + (1 - \cos(2t)) \cdot \frac{d}{dt}(\cos(2t)) \right) \] Calculating the derivatives: - \( \frac{d}{dt}(1 - \cos(2t)) = 2 \sin(2t) \) - \( \frac{d}{dt}(\cos(2t)) = -2 \sin(2t) \) Substituting these back into the equation: \[ \frac{dy}{dt} = b \left( \cos(2t)(2 \sin(2t)) + (1 - \cos(2t))(-2 \sin(2t)) \right) \] Simplifying: \[ \frac{dy}{dt} = b \left( 2 \cos(2t) \sin(2t) - 2 \sin(2t)(1 - \cos(2t)) \right) \] Factoring out the common term: \[ \frac{dy}{dt} = 2b \sin(2t) \left( \cos(2t) - (1 - \cos(2t)) \right) \] \[ \frac{dy}{dt} = 2b \sin(2t)(2\cos(2t) - 1) \] ### Step 3: Find \( \frac{dy}{dx} \) Now we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2b \sin(2t)(2\cos(2t) - 1)}{2a \left( \cos(2t)(1 + \cos(2t)) - \sin^2(2t) \right)} \] ### Step 4: Evaluate at \( t = \frac{\pi}{4} \) At \( t = \frac{\pi}{4} \): \[ \sin(2t) = \sin\left(\frac{\pi}{2}\right) = 1, \quad \cos(2t) = \cos\left(\frac{\pi}{2}\right) = 0 \] Substituting these values: \[ \frac{dy}{dx} = \frac{2b(1)(2 \cdot 0 - 1)}{2a \left( 0(1 + 0) - 1 \right)} = \frac{2b(-1)}{2a(-1)} = \frac{b}{a} \] ### Conclusion Thus, we have shown that: \[ \left( \frac{dy}{dx} \right)_{t=\frac{\pi}{4}} = \frac{b}{a} \]

To solve the problem, we start with the given equations for \( x \) and \( y \): \[ x = a \sin(2t)(1 + \cos(2t)) \] \[ y = b \cos(2t)(1 - \cos(2t)) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t) , show that at t=pi/4 , (dy)/(dx)=b/a .

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), show that at pi/4,(dy)/(dx)=b/adot

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), find the values of (dy)/(dx) at t=pi/4 and t=pi/3dot

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t) then show that, dy/dx=-y/x.

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x=cost(3-2\ cos^2t) and y=sint(3-2sin^2t) find the value of (dy)/(dx) at t=pi/4

If x = a ( t+ sin t) and y = a (1- cos t) " find " (dy)/(dx)

If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t) show that dy/dx =0 at t=pi/6

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2