Home
Class 12
MATHS
Differentiate tan^(-1)'(sqrt(1+x^(2))-1)...

Differentiate `tan^(-1)'(sqrt(1+x^(2))-1)/(x)` w.r.t. `tan^(-1)x`, when `x ne 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the expression \( \frac{\tan^{-1}(\sqrt{1+x^2}-1)}{x} \) with respect to \( \tan^{-1}(x) \) when \( x \neq 0 \), we will follow these steps: ### Step 1: Define the functions Let: - \( u = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) - \( v = \tan^{-1}(x) \) ### Step 2: Simplify the expression for \( u \) We start by simplifying \( u \): 1. Recognize that \( \sqrt{1+x^2} = \sec(\theta) \) when \( x = \tan(\theta) \). 2. Thus, we can rewrite \( u \): \[ u = \tan^{-1}\left(\frac{\sec(\theta)-1}{\tan(\theta)}\right) \] 3. Using the identity \( \sec^2(\theta) = 1 + \tan^2(\theta) \), we can express \( \sec(\theta) \) in terms of \( \tan(\theta) \). 4. This gives: \[ u = \tan^{-1}\left(\frac{\sec(\theta)-1}{\tan(\theta)}\right) = \tan^{-1}\left(\frac{\sqrt{1+\tan^2(\theta)}-1}{\tan(\theta)}\right) \] ### Step 3: Further simplification 1. We can express \( \sec(\theta) \) as \( \frac{1}{\cos(\theta)} \) and \( \tan(\theta) \) as \( \frac{\sin(\theta)}{\cos(\theta)} \). 2. This leads to: \[ u = \tan^{-1}\left(\frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}}\right) = \tan^{-1}\left(\frac{1 - \cos(\theta)}{\sin(\theta)}\right) \] 3. Using the identity \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \), we can write: \[ u = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)}\right) \] 4. Since \( \sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) \), we find: \[ u = \tan^{-1}\left(\frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}\right) = \frac{\theta}{2} \] 5. Substituting back \( \theta = \tan^{-1}(x) \): \[ u = \frac{1}{2}\tan^{-1}(x) \] ### Step 4: Differentiate \( u \) and \( v \) Now we differentiate \( u \) and \( v \): 1. Differentiate \( u \): \[ \frac{du}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \] 2. Differentiate \( v \): \[ \frac{dv}{dx} = \frac{1}{1+x^2} \] ### Step 5: Find \( \frac{du}{dv} \) Using the chain rule: \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{\frac{1}{2(1+x^2)}}{\frac{1}{1+x^2}} = \frac{1}{2} \] ### Final Answer Thus, the derivative \( \frac{du}{dv} \) is: \[ \frac{1}{2} \]

To differentiate the expression \( \frac{\tan^{-1}(\sqrt{1+x^2}-1)}{x} \) with respect to \( \tan^{-1}(x) \) when \( x \neq 0 \), we will follow these steps: ### Step 1: Define the functions Let: - \( u = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \) - \( v = \tan^{-1}(x) \) ### Step 2: Simplify the expression for \( u \) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x , when x!=0.

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x] with respect to x

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Differentiate w.r.t x tan (sqrt(x))