Home
Class 12
MATHS
Differentiate sin(xy) + (x)/(y) = x^(2) ...

Differentiate `sin(xy) + (x)/(y) = x^(2) - y`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the equation \( \sin(xy) + \frac{x}{y} = x^2 - y \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating each term in the equation with respect to \( x \): \[ \frac{d}{dx}(\sin(xy)) + \frac{d}{dx}\left(\frac{x}{y}\right) = \frac{d}{dx}(x^2) - \frac{d}{dx}(y) \] ### Step 2: Apply the chain rule and product rule For the first term \( \sin(xy) \), we use the chain rule: \[ \frac{d}{dx}(\sin(xy)) = \cos(xy) \cdot \frac{d}{dx}(xy) = \cos(xy) \cdot (y + x\frac{dy}{dx}) \] For the second term \( \frac{x}{y} \), we apply the quotient rule: \[ \frac{d}{dx}\left(\frac{x}{y}\right) = \frac{y \cdot \frac{d}{dx}(x) - x \cdot \frac{d}{dx}(y)}{y^2} = \frac{y \cdot 1 - x \cdot \frac{dy}{dx}}{y^2} = \frac{y - x\frac{dy}{dx}}{y^2} \] For the right side: \[ \frac{d}{dx}(x^2) = 2x \quad \text{and} \quad \frac{d}{dx}(y) = \frac{dy}{dx} \] ### Step 3: Combine the results Now we can combine all these results into our differentiated equation: \[ \cos(xy) \cdot (y + x\frac{dy}{dx}) + \frac{y - x\frac{dy}{dx}}{y^2} = 2x - \frac{dy}{dx} \] ### Step 4: Rearrange the equation Next, we will rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \cos(xy) \cdot y + \cos(xy) \cdot x\frac{dy}{dx} + \frac{y - x\frac{dy}{dx}}{y^2} = 2x - \frac{dy}{dx} \] ### Step 5: Collect all \( \frac{dy}{dx} \) terms Now, we will collect all terms involving \( \frac{dy}{dx} \): \[ \cos(xy) \cdot x\frac{dy}{dx} + \frac{y}{y^2} - \frac{x}{y^2}\frac{dy}{dx} = 2x - \cos(xy) \cdot y + \frac{dy}{dx} \] ### Step 6: Factor out \( \frac{dy}{dx} \) This gives us: \[ \left(\cos(xy) \cdot x - \frac{x}{y^2} + 1\right)\frac{dy}{dx} = 2x - \cos(xy) \cdot y \] ### Step 7: Solve for \( \frac{dy}{dx} \) Finally, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{2x - \cos(xy) \cdot y}{\cos(xy) \cdot x - \frac{x}{y^2} + 1} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{2x - \cos(xy) \cdot y}{\cos(xy) \cdot x - \frac{x}{y^2} + 1} \] ---

To differentiate the equation \( \sin(xy) + \frac{x}{y} = x^2 - y \) with respect to \( x \), we will follow these steps: ### Step 1: Differentiate both sides We start by differentiating each term in the equation with respect to \( x \): \[ \frac{d}{dx}(\sin(xy)) + \frac{d}{dx}\left(\frac{x}{y}\right) = \frac{d}{dx}(x^2) - \frac{d}{dx}(y) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Differentiate sec(x+y) = xy

Differentiate sin^(-1)((2x)/(1+x^2))

Differentiate sin^(m)x*cos^(n)x

Differentiate w.r.t x sin^(2) x + cos ^(2) y = 1

Differentiate sin^2x w.r.t e^(cosx) .

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to x , when x in (-1,\ 1)

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to x , when x in (1,\ oo)

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to x , when x in (-oo,\ -1)

Differentiate w.r.t x sin^4x

Differentiate w.r.t x sin^(2)y + cos xy = k