Home
Class 12
MATHS
If ax^(2)+2hxy+by^(2)+2gx+2fy+c=0, then ...

If `ax^(2)+2hxy+by^(2)+2gx+2fy+c=0`, then show that `(dy)/(dx).(dx)/(dy) = 1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \(\frac{dy}{dx} \cdot \frac{dx}{dy} = 1\) given the equation: \[ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \] ### Step 1: Differentiate the equation with respect to \(x\) We start by differentiating the entire equation with respect to \(x\): \[ \frac{d}{dx}(ax^2) + \frac{d}{dx}(2hxy) + \frac{d}{dx}(by^2) + \frac{d}{dx}(2gx) + \frac{d}{dx}(2fy) + \frac{d}{dx}(c) = 0 \] Calculating each derivative: 1. \(\frac{d}{dx}(ax^2) = 2ax\) 2. \(\frac{d}{dx}(2hxy) = 2hy + 2hx\frac{dy}{dx}\) (using the product rule) 3. \(\frac{d}{dx}(by^2) = 2by\frac{dy}{dx}\) 4. \(\frac{d}{dx}(2gx) = 2g\) 5. \(\frac{d}{dx}(2fy) = 2f\frac{dy}{dx}\) 6. \(\frac{d}{dx}(c) = 0\) Putting it all together, we have: \[ 2ax + 2hy + 2hx\frac{dy}{dx} + 2by\frac{dy}{dx} + 2g + 2f\frac{dy}{dx} = 0 \] ### Step 2: Simplify the equation Now, we can simplify the equation: \[ 2ax + 2hy + (2hx + 2by + 2f)\frac{dy}{dx} + 2g = 0 \] Dividing the entire equation by 2: \[ ax + hy + (hx + by + f)\frac{dy}{dx} + g = 0 \] ### Step 3: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ (hx + by + f)\frac{dy}{dx} = -ax - hy - g \] Thus, we can express \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-ax - hy - g}{hx + by + f} \] ### Step 4: Differentiate the equation with respect to \(y\) Now, we differentiate the original equation with respect to \(y\): \[ \frac{d}{dy}(ax^2) + \frac{d}{dy}(2hxy) + \frac{d}{dy}(by^2) + \frac{d}{dy}(2gx) + \frac{d}{dy}(2fy) + \frac{d}{dy}(c) = 0 \] Calculating each derivative: 1. \(\frac{d}{dy}(ax^2) = 0\) (since \(x\) is treated as a constant) 2. \(\frac{d}{dy}(2hxy) = 2hx + 2hy\frac{dx}{dy}\) 3. \(\frac{d}{dy}(by^2) = 2by\) 4. \(\frac{d}{dy}(2gx) = 0\) 5. \(\frac{d}{dy}(2fy) = 2f\) 6. \(\frac{d}{dy}(c) = 0\) Putting it all together, we have: \[ 2hx + 2hy\frac{dx}{dy} + 2by + 2f = 0 \] ### Step 5: Simplify the equation Now, we can simplify the equation: \[ 2hy\frac{dx}{dy} = -2hx - 2by - 2f \] Dividing the entire equation by 2: \[ hy\frac{dx}{dy} = -hx - by - f \] ### Step 6: Solve for \(\frac{dx}{dy}\) Rearranging gives: \[ \frac{dx}{dy} = \frac{-hx - by - f}{hy} \] ### Step 7: Show that \(\frac{dy}{dx} \cdot \frac{dx}{dy} = 1\) Now, we can multiply \(\frac{dy}{dx}\) and \(\frac{dx}{dy}\): \[ \frac{dy}{dx} \cdot \frac{dx}{dy} = \left(\frac{-ax - hy - g}{hx + by + f}\right) \cdot \left(\frac{-hx - by - f}{hy}\right) \] This simplifies to: \[ \frac{(ax + hy + g)(hx + by + f)}{(hx + by + f)(hy)} \] Since the numerator and denominator are equal, we have: \[ \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \] Thus, we have shown that: \[ \frac{dy}{dx} \cdot \frac{dx}{dy} = 1 \]

To solve the problem, we need to show that \(\frac{dy}{dx} \cdot \frac{dx}{dy} = 1\) given the equation: \[ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \] ### Step 1: Differentiate the equation with respect to \(x\) ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=cotx show that (d^2y)/(dx^2)+2y(dy)/(dx)=0 .

If ax^2+2hxy+by^2+2gx+2fy+c=0 then find dy/dx

If y=sin^(-1)x , then show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If ax^(2)+2hxy+by^(2)=0 then (dy)/(dx) is

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If a x^2+2\ h x y+b y^2+2\ gx+2\ fy+c=0 , find (dy)/(dx) and (dx)/(dy) . Also, show that (dy)/(dx)dot(dx)/(dy)=1 .

If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2)) =0

If y=a e^(2x)+b e^(-x) , show that, (d^2y)/(dx^2)-(dy)/(dx)-2y=0 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2