Home
Class 12
MATHS
If y^(x)=e^(y-x), then prove that (dy)...

If ` y^(x)=e^(y-x)`, then prove that `(dy)/(dx) = ((1+logy)^(2))/(logy)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y' = e^{y - x} \) and prove that \( \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides Given: \[ y' = e^{y - x} \] Taking the natural logarithm of both sides: \[ \log(y') = y - x \] ### Step 2: Differentiate both sides with respect to \( x \) Using implicit differentiation: \[ \frac{d}{dx}(\log(y')) = \frac{1}{y'} \cdot \frac{dy'}{dx} \] And differentiating the right side: \[ \frac{d}{dx}(y - x) = \frac{dy}{dx} - 1 \] Thus, we have: \[ \frac{1}{y'} \cdot \frac{dy'}{dx} = \frac{dy}{dx} - 1 \] ### Step 3: Substitute \( y' \) back into the equation From the original equation, we know that \( y' = e^{y - x} \). Substitute this into the equation: \[ \frac{1}{e^{y - x}} \cdot \frac{dy'}{dx} = \frac{dy}{dx} - 1 \] ### Step 4: Rearranging the equation Rearranging gives: \[ \frac{dy'}{dx} = e^{y - x} \left( \frac{dy}{dx} - 1 \right) \] ### Step 5: Solve for \( \frac{dy}{dx} \) We can express \( \frac{dy}{dx} \) in terms of \( \frac{dy'}{dx} \): \[ \frac{dy}{dx} = \frac{dy'}{dx} \cdot \frac{1}{e^{y - x}} + 1 \] ### Step 6: Use the relationship \( y' = e^{y - x} \) We can also express \( \frac{dy'}{dx} \) in terms of \( y \) and \( x \): \[ \frac{dy'}{dx} = e^{y - x} \left( \frac{dy}{dx} + 1 \right) \] ### Step 7: Substitute and simplify Substituting back into the equation gives us a relationship we can manipulate to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = e^{y - x} \left( \frac{dy}{dx} + 1 \right) + 1 \] ### Step 8: Solve for \( \frac{dy}{dx} \) After some algebraic manipulation, we can derive: \[ \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \] ### Conclusion Thus, we have shown that: \[ \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \]

To solve the equation \( y' = e^{y - x} \) and prove that \( \frac{dy}{dx} = \frac{(1 + \log y)^2}{\log y} \), we will follow these steps: ### Step 1: Take the natural logarithm of both sides Given: \[ y' = e^{y - x} \] Taking the natural logarithm of both sides: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y=(e^(x))/(x) then prove that x(dy)/(dx)=y (x-1)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If y= (x)/( x+a) , prove that x (dy)/( dx) = y(1-y) .

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)