Home
Class 12
MATHS
If x sin(a+y)+sina.cos(a+y)=0, then pro...

If `x sin(a+y)+sina.cos(a+y)=0`, then prove that
`(dy)/(dx) = (sin^(2)(a+y))/(sina)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0 \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \(x\): \[ x \sin(a + y) = -\sin a \cos(a + y) \] ### Step 2: Expressing \(x\) Now, we can express \(x\) as: \[ x = -\frac{\sin a \cos(a + y)}{\sin(a + y)} \] ### Step 3: Using Trigonometric Identities Using the trigonometric identity \(\cot x = \frac{\cos x}{\sin x}\), we can rewrite \(x\): \[ x = -\sin a \cdot \cot(a + y) \] ### Step 4: Differentiating with Respect to \(y\) Next, we differentiate both sides of the equation with respect to \(y\): \[ \frac{dx}{dy} = -\sin a \cdot \frac{d}{dy}(\cot(a + y)) \] Using the derivative of \(\cot x\), which is \(-\csc^2 x\): \[ \frac{dx}{dy} = -\sin a \cdot (-\csc^2(a + y)) = \sin a \cdot \csc^2(a + y) \] ### Step 5: Simplifying the Derivative We can simplify \(\csc^2(a + y)\): \[ \frac{dx}{dy} = \frac{\sin a}{\sin^2(a + y)} \] ### Step 6: Finding \(\frac{dy}{dx}\) To find \(\frac{dy}{dx}\), we take the reciprocal of \(\frac{dx}{dy}\): \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \] ### Conclusion Thus, we have proven that: \[ \frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a} \]

To solve the problem, we start with the given equation: \[ x \sin(a + y) + \sin a \cos(a + y) = 0 \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If xsin(a+y)+sinacos(a+y)=0 , prove that (dy)/(dx)=(s in^2(a+y))/(sina)

If xsin(a+y)+sina.cos(a+y)=0. Prove that : (dy)/(dx)=(sin^2(a+y)/(sina))

If xsin(a+y)+sina cos(a+y)=0 , prove that (dy)/(dx)=sin^2(a+y)/sina

If siny=xsin(a+y), prove that (dy)/(dx)= (sin^2(a+y))/(sina) .

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)

If siny=xsin(a+y),\ \ prove that (dy)/(dx)=(sin ^2\ (a+y))/(sina)

If y=xsin(a+y) , prove that (dy)/(dx)=(s in^2(a+y))/(sin(a+y)-y cos\ (a+y))

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot

If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(sina)dot