Home
Class 12
MATHS
f(x) = x^(3)-2x^(2)-x+3 in [0,1]...

`f(x) = x^(3)-2x^(2)-x+3` in `[0,1]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have, `f(x) = x^(3)-2x^(2)-x+3` in `[0,1]`
(i) Since `f(x)` is a polynomial function.
Hence, `f(x)` is continuous in `[0,1]`.
(ii) `f'(x) = 3x^(2)-4x-1`, which exists in `(0,1)`.
Hence, `f(x)` is differentiable in `(0,1)`
Therefore, by mean value theorem `3x in (0, 1)` such that,
`f(c) = (f(1) - f(0))/(1-0)`
`rArr 3c^(2) - 4c - 1 = ([1-2-1+3]-[0+3])/(1-0)`
`rArr 3c^(2) - 4c -1=(-2)/(1)`
`rArr 3c^(2)-4c + 1 = 0`
`rArr 3c^(2) -3c-c+1 = 0`
`rArr 3c(c-1)-1(c-1) = 0`
`rArr (3c-1)(c-1) = 0`
`rarr c = 1//3, 1`, where `1/3 in (0,1)`
Hence, the mean value theorem has been verified.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

The point(s) of minimum of function, f(x)=4x^3-x|x-2|,x in [0,3] is x=0 (b) x=1/3 x=1/2 (d) x=2

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-1 ,0)] .

If f(x)=x^(1//3)(x-2)^(2//3) for all x , then the domain of f' is a. x in R-{0} b. {x|x > 0} c. x in R-{0,2} d. x in R

If f(x) = (3x-2)/(2x-3),AA x in R -{(3)/(2)} , " Find " f^(-1)

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0