Home
Class 12
MATHS
f(x)=sqrt(25-x^(2)) in [1,5]...

`f(x)=sqrt(25-x^(2))` in `[1,5]`

Text Solution

Verified by Experts

The correct Answer is:
N/a

We have, `f(x) = sqrt(25-x)` in `[1,5]`
(i) Since, `f(x) = (25-x^(2))^(1//2)`, where `25-x^(2) ge 0`
` rArr x^(2) le 5 rArr -5 le x le 5`
`rArr x^(2) le +- 5 rArr le x le 5`
Hence, `f(x)` is continuous in `[1,5]`
(ii) `f'(x) = 1/2 (25-x^(2))^(-1//2). -2x= (-x)/(sqrt(25-x^(2)))`, which exists i `(1,5)`.
Hence, `f(x)` is differentiable in `(1,5)`
Since, conditions of mean value theorem are satisfied.
By mean value theorem `3c in (1,5)` such that
` f'(c) = (f(5)-f(1))/(5-1) rArr (-c)/(sqrt(25-c^(2))) = (0-sqrt(24))/(4)`
`rArr (c^(2))/(25-c^(2)) = 24/16`
`rArr (c^(2))/(25-c^(2)) = (24)/(16)`
`rArr 16c^(2) = 600 - 24 c^(2)`
`rArr c^(2) = (600)/(40) = 15`
`rArr c = +- sqrt(15)`
Also. `c = sqrt(15) in (1,5)`
Hence, the mean value theorem has been verified.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x )=sqrt(25-x^(2)) , then what is underset(xto1)lim(f(x)-f(1))/(x-1) equal to

Let D be the domain of the real valued function f defined by f(x)=sqrt(25-x^(2)) . Then, write D.

Find the domain of definition of the function f(x) = sqrt(x^(2) - 25)

let f(x)=sqrt(1+x^2) then

If f is a bijection satisfying f'(x)=sqrt((1-{f(x)}^(2)) , then (f^(1))'x

Find the domain of f(x) = sqrt(x^(2) - 25x + 144)

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?