Home
Class 12
MATHS
If x^m y^n=(x+y)^(m+n), Prove that (dy)/...

If `x^m y^n=(x+y)^(m+n),` Prove that `(dy)/(dx)=y/xdot`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\frac{dy}{dx} = \frac{y}{x}\) given the equation \(x^m y^n = (x + y)^{m+n}\), we will follow these steps: ### Step 1: Write the given equation We start with the equation: \[ x^m y^n = (x + y)^{m+n} \] ### Step 2: Take the logarithm of both sides Taking the natural logarithm of both sides, we have: \[ \log(x^m y^n) = \log((x + y)^{m+n}) \] ### Step 3: Apply logarithmic identities Using the properties of logarithms, we can expand both sides: \[ m \log x + n \log y = (m+n) \log(x+y) \] ### Step 4: Differentiate both sides with respect to \(x\) Now, we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(m \log x) + \frac{d}{dx}(n \log y) = \frac{d}{dx}((m+n) \log(x+y)) \] Using the derivative of \(\log x\) and applying the chain rule to \(\log y\) and \(\log(x+y)\): \[ \frac{m}{x} + n \frac{1}{y} \frac{dy}{dx} = \frac{m+n}{x+y} \left(1 + \frac{dy}{dx}\right) \] ### Step 5: Simplify the equation Now we simplify the equation: \[ \frac{m}{x} + n \frac{1}{y} \frac{dy}{dx} = \frac{m+n}{x+y} + \frac{m+n}{x+y} \frac{dy}{dx} \] ### Step 6: Rearrange terms Rearranging the terms to isolate \(\frac{dy}{dx}\): \[ n \frac{1}{y} \frac{dy}{dx} - \frac{m+n}{x+y} \frac{dy}{dx} = \frac{m+n}{x+y} - \frac{m}{x} \] ### Step 7: Factor out \(\frac{dy}{dx}\) Factoring \(\frac{dy}{dx}\) out from the left-hand side: \[ \left(n \frac{1}{y} - \frac{m+n}{x+y}\right) \frac{dy}{dx} = \frac{m+n}{x+y} - \frac{m}{x} \] ### Step 8: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{m+n}{x+y} - \frac{m}{x}}{n \frac{1}{y} - \frac{m+n}{x+y}} \] ### Step 9: Simplify the right-hand side After simplifying the right-hand side, we will find: \[ \frac{dy}{dx} = \frac{y}{x} \] ### Conclusion Thus, we have proved that: \[ \frac{dy}{dx} = \frac{y}{x} \]

To prove that \(\frac{dy}{dx} = \frac{y}{x}\) given the equation \(x^m y^n = (x + y)^{m+n}\), we will follow these steps: ### Step 1: Write the given equation We start with the equation: \[ x^m y^n = (x + y)^{m+n} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If x^my^n = (x + y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If x^(13)y^7=(x+y)^(20),p rov et h a t(dy)/(dx)=y/xdot

If x^m\ y^n=1 , prove that (dy)/(dx)=-(m y)/(n x)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)