Home
Class 12
MATHS
Find the values of (dy)/(dx), if y = x^(...

Find the values of `(dy)/(dx)`, if `y = x^(tanx)+sqrt((x^(2)+1)/(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \] we will differentiate each part of the function separately. ### Step 1: Differentiate \( y = x^{\tan x} \) Let \( u = x^{\tan x} \). To differentiate \( u \), we can use logarithmic differentiation. Taking the natural logarithm of both sides: \[ \ln u = \tan x \cdot \ln x. \] Now, differentiate both sides with respect to \( x \): \[ \frac{1}{u} \frac{du}{dx} = \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x}. \] Now, multiply both sides by \( u \): \[ \frac{du}{dx} = u \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right). \] Substituting back \( u = x^{\tan x} \): \[ \frac{du}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right). \] ### Step 2: Differentiate \( y = \sqrt{\frac{x^2 + 1}{2}} \) Let \( v = \sqrt{\frac{x^2 + 1}{2}} \). We can simplify this to: \[ v = \frac{1}{\sqrt{2}} \sqrt{x^2 + 1}. \] Now, differentiate \( v \): \[ \frac{dv}{dx} = \frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x = \frac{x}{\sqrt{2(x^2 + 1)}}. \] ### Step 3: Combine the derivatives Now, we can combine the derivatives of \( u \) and \( v \) to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}. \] Substituting the expressions we found: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) + \frac{x}{\sqrt{2(x^2 + 1)}}. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^{\tan x} \left( \sec^2 x \cdot \ln x + \frac{\tan x}{x} \right) + \frac{x}{\sqrt{2(x^2 + 1)}}. \] ---

To find the derivative \( \frac{dy}{dx} \) for the function \[ y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \] we will differentiate each part of the function separately. ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

find dy/dx if y = x tanx

If y=x^(tanx)+sqrt((x^2+1)/2),fin d(dy)/(dx)

Find dy/dx if y= x/tanx

If y=x^(tanx)+sqrt((x^2+1)/2) , find (dy)/(dx)

If y=x^(tanx)+sqrt((x^2+1)/2) , find (dy)/(dx)

Find dy/dx if x+y =( tanx)^2

Find dy/dx if y= x.tanx .

2.Find (dy)/(dx) if y=(1-sqrt(x))(1+sqrt(x))

"Find "(dy)/(dx)" for "y=log(x+sqrt(a^(2)+x^(2))).

1) Find (dy)/(dx) if y=sqrt(x+sqrt(x+1))