Home
Class 12
MATHS
If f(x)=[{:(mx+1,if x le (pi)/(2)),(sin...

If `f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):}` is continuous at `x = (pi)/(2)`, then

A

`m = 1, n = 0`

B

`m = (n pi)/(2)+1`

C

`n = (mpi)/(2)`

D

`m = n = (pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( m \) and \( n \) such that the function \[ f(x) = \begin{cases} mx + 1 & \text{if } x \leq \frac{\pi}{2} \\ \sin x + n & \text{if } x > \frac{\pi}{2} \end{cases} \] is continuous at \( x = \frac{\pi}{2} \), we need to ensure that the left-hand limit and the right-hand limit at \( x = \frac{\pi}{2} \) are equal. ### Step-by-step Solution: 1. **Identify the left-hand limit**: The left-hand limit as \( x \) approaches \( \frac{\pi}{2} \) is given by the expression for \( f(x) \) when \( x \leq \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right)^- = m\left(\frac{\pi}{2}\right) + 1 \] 2. **Identify the right-hand limit**: The right-hand limit as \( x \) approaches \( \frac{\pi}{2} \) is given by the expression for \( f(x) \) when \( x > \frac{\pi}{2} \): \[ f\left(\frac{\pi}{2}\right)^+ = \sin\left(\frac{\pi}{2}\right) + n = 1 + n \] 3. **Set the left-hand limit equal to the right-hand limit**: For the function to be continuous at \( x = \frac{\pi}{2} \), we must have: \[ m\left(\frac{\pi}{2}\right) + 1 = 1 + n \] 4. **Simplify the equation**: By simplifying the equation, we can isolate \( n \): \[ m\left(\frac{\pi}{2}\right) + 1 - 1 = n \] \[ n = m\left(\frac{\pi}{2}\right) \] 5. **Final relation**: Thus, we have established the relationship between \( m \) and \( n \): \[ n = \frac{m\pi}{2} \] ### Summary: The function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \) if and only if the relationship \( n = \frac{m\pi}{2} \) holds.

To determine the values of \( m \) and \( n \) such that the function \[ f(x) = \begin{cases} mx + 1 & \text{if } x \leq \frac{\pi}{2} \\ \sin x + n & \text{if } x > \frac{\pi}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={{:((1-sqrt2sinx)/(pi-4x)",",ifxne(pi)/(4)),(a",",if x=(pi)/(4)):} in continuous at (pi)/(4) , then a is equal to :

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):} . If f(x) is continuous at x=(pi)/(2) , then the value of (a^(2))/(5b) is

If f(x)={m x+1\ \ \ ,\ \ \ xlt=pi/2,\ \ \ \ \ \sinx+n\ \ \ ,\ \ \ x >pi/2 is continuous at x=pi/2 , then

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

NCERT EXEMPLAR ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Objective type
  1. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  2. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  3. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |

  4. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  5. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  6. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |

  7. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  8. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  9. The set of points where the function f given by f(x) - |2x-1| sinx ...

    Text Solution

    |

  10. The function f(x) =cot x is discontinuous on set

    Text Solution

    |

  11. The function f(x) = e^(|x|) is

    Text Solution

    |

  12. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  13. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  14. If f(x) = |sinx|, then

    Text Solution

    |

  15. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  17. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

    Text Solution

    |

  18. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  19. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  20. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |