Home
Class 12
MATHS
If y = log ((1-x^(2))/(1+x^(2))), then...

If ` y = log ((1-x^(2))/(1+x^(2)))`, then `(dy)/(dx)` is equal to

A

` (4x^(3))/(1-x^(4))`

B

`(-4x)/(1-x^(4))`

C

` (1)/(4-x^(4))`

D

`(-4x^(3))/(1-x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we will follow these steps: ### Step 1: Differentiate \( y \) We start by differentiating both sides with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \log\left(\frac{1 - x^2}{1 + x^2}\right) \right) \] ### Step 2: Apply the Chain Rule Using the chain rule for logarithmic differentiation, we have: \[ \frac{dy}{dx} = \frac{1}{\frac{1 - x^2}{1 + x^2}} \cdot \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{1 + x^2}{1 - x^2} \cdot \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right) \] ### Step 3: Differentiate the Quotient Now we need to differentiate \( \frac{1 - x^2}{1 + x^2} \) using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = 1 - x^2 \) and \( v = 1 + x^2 \). Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): \[ \frac{du}{dx} = -2x, \quad \frac{dv}{dx} = 2x \] Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{1 - x^2}{1 + x^2}\right) = \frac{(1 + x^2)(-2x) - (1 - x^2)(2x)}{(1 + x^2)^2} \] ### Step 4: Simplify the Derivative Now we simplify the numerator: \[ = \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 + x^2)^2} \] \[ = \frac{-2x - 2x^3 - 2x + 2x^3}{(1 + x^2)^2} \] \[ = \frac{-4x}{(1 + x^2)^2} \] ### Step 5: Substitute Back Now substituting back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1 + x^2}{1 - x^2} \cdot \frac{-4x}{(1 + x^2)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-4x(1 + x^2)}{(1 - x^2)(1 + x^2)^2} \] The \( 1 + x^2 \) in the numerator and one in the denominator cancels out: \[ \frac{dy}{dx} = \frac{-4x}{(1 - x^2)(1 + x^2)} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{-4x}{1 - x^4} \]

To find the derivative of the function \( y = \log\left(\frac{1 - x^2}{1 + x^2}\right) \), we will follow these steps: ### Step 1: Differentiate \( y \) We start by differentiating both sides with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \log\left(\frac{1 - x^2}{1 + x^2}\right) \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=log((1-x^(2))/(1+x^(2))),|x|lt1 , then (dy)/(dx) =

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

if y=(1+1/x^(2))/(1-1/(x)^(2)) ,then (dy)/(dx) is equal to

If y=x^(x^(2)), then (dy)/(dx) equals

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y=log((x^(2))/(e^(2))) then (d^(2)y)/(dx^(2)) equal to: a) -(1)/(x) b) -(1)/(x^(2)) c) (2)/(x^(2)) d) -(2)/(x^(2))

8.If .If y=x^(2)+(1)/(x^(2)+(1)/(x^(2)+x^(2)+...) ,then (dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

" If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

NCERT EXEMPLAR ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Objective type
  1. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  2. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  3. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |

  4. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  5. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  6. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |

  7. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  8. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  9. The set of points where the function f given by f(x) - |2x-1| sinx ...

    Text Solution

    |

  10. The function f(x) =cot x is discontinuous on set

    Text Solution

    |

  11. The function f(x) = e^(|x|) is

    Text Solution

    |

  12. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  13. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  14. If f(x) = |sinx|, then

    Text Solution

    |

  15. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  17. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

    Text Solution

    |

  18. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  19. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  20. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |