Home
Class 12
MATHS
If y = sqrt(sinx+y), then (dy)/(dx) is e...

If `y = sqrt(sinx+y)`, then `(dy)/(dx)` is equal to

A

`(cosx)/(2y-1)`

B

`(cosx)/(1-2y)`

C

`(sinx)/(1-2y)`

D

`(sinx)/(2y-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(y = \sqrt{\sin x + y}\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ y = \sqrt{\sin x + y} \] Differentiating both sides with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \sqrt{\sin x + y} \right) \] ### Step 2: Apply the chain rule Using the chain rule, we differentiate the right-hand side: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\sin x + y}} \cdot \left( \cos x + \frac{dy}{dx} \right) \] Here, \(\cos x\) is the derivative of \(\sin x\) and \(\frac{dy}{dx}\) is the derivative of \(y\) with respect to \(x\). ### Step 3: Rearranging the equation Now, we can rearrange the equation: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\sin x + y}} \cdot \cos x + \frac{1}{2\sqrt{\sin x + y}} \cdot \frac{dy}{dx} \] ### Step 4: Isolate \(\frac{dy}{dx}\) We can factor out \(\frac{dy}{dx}\) from the right-hand side: \[ \frac{dy}{dx} - \frac{1}{2\sqrt{\sin x + y}} \cdot \frac{dy}{dx} = \frac{1}{2\sqrt{\sin x + y}} \cdot \cos x \] This simplifies to: \[ \frac{dy}{dx} \left( 1 - \frac{1}{2\sqrt{\sin x + y}} \right) = \frac{1}{2\sqrt{\sin x + y}} \cdot \cos x \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{1}{2\sqrt{\sin x + y}} \cdot \cos x}{1 - \frac{1}{2\sqrt{\sin x + y}}} \] ### Step 6: Substitute \(y\) back into the equation Since \(y = \sqrt{\sin x + y}\), we can substitute \(y\) back into the equation: \[ \frac{dy}{dx} = \frac{\frac{1}{2y} \cdot \cos x}{1 - \frac{1}{2y}} \] ### Step 7: Simplify the final expression This gives us: \[ \frac{dy}{dx} = \frac{\cos x}{2y - 1} \] Thus, the final answer is: \[ \frac{dy}{dx} = \frac{\cos x}{2y - 1} \] ---

To find \(\frac{dy}{dx}\) for the equation \(y = \sqrt{\sin x + y}\), we will use implicit differentiation. Here’s a step-by-step solution: ### Step 1: Differentiate both sides We start with the equation: \[ y = \sqrt{\sin x + y} \] Differentiating both sides with respect to \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(sinx+y) , then find (dy)/(dx)

If y=sqrt(sinx+y) , then (dy)/(dx) equals (a) (cosx)/(2y-1) (b) (cosx)/(1-2y) (c) (sinx)/(1-2y) (d) (sinx)/(2y-1)

If y=sqrt(sinx+y) ,write (dy)/(dx)dot

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

if sqrt(x^2+y^2)=e^t where t=sin^-1 (y/sqrt(x^2+y^2)) then (dy)/(dx) is equal to :

If y=2sinx ,then (dy)/(dx) will be

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+...oo)))) , then (dy)/(dx) is equal to

If y=sinx^(2) then (dy)/(dx)=

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

y=e^(sin x)/sinx then (dy)/(dx)=

NCERT EXEMPLAR ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Objective type
  1. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  2. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  3. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

    Text Solution

    |

  4. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  5. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  6. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |

  7. If f(x) = 2x and g(x) = (x^(2))/(2)+1 , then which of the following ...

    Text Solution

    |

  8. The function f(x) = (4-x^(2))/(4x-x^(3)) is discontinuous at

    Text Solution

    |

  9. The set of points where the function f given by f(x) - |2x-1| sinx ...

    Text Solution

    |

  10. The function f(x) =cot x is discontinuous on set

    Text Solution

    |

  11. The function f(x) = e^(|x|) is

    Text Solution

    |

  12. If f(x) = x^(2)sin'(1)/(x), where x ne 0, then the value of the functi...

    Text Solution

    |

  13. If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is contin...

    Text Solution

    |

  14. If f(x) = |sinx|, then

    Text Solution

    |

  15. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sqrt(sinx+y), then (dy)/(dx) is equal to

    Text Solution

    |

  17. The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

    Text Solution

    |

  18. If x = t^(2) and y = t^(3), then (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  19. The value of c in Rolle's theorem for the function f(x) = x^(3) - 3...

    Text Solution

    |

  20. For the function f(x) = x + 1/x, x in [1,3] , the value of c for me...

    Text Solution

    |