Home
Class 12
MATHS
If f(x) = |cosx|, then f'(pi/4) is equal...

If `f(x) = |cosx|`, then `f'(pi/4)` is equal to `"……."`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'( \frac{\pi}{4} ) \) for the function \( f(x) = |\cos x| \), we will follow these steps: ### Step 1: Determine the value of \( \cos(\frac{\pi}{4}) \) First, we need to evaluate \( \cos(\frac{\pi}{4}) \): \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 2: Identify the sign of \( \cos(x) \) in the interval Since \( \frac{\pi}{4} \) is in the first quadrant, where cosine is positive, we can express \( f(x) \) without the modulus: \[ f(x) = |\cos x| = \cos x \quad \text{for } x \in \left[0, \frac{\pi}{2}\right] \] ### Step 3: Differentiate \( f(x) \) Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(\cos x) = -\sin x \] ### Step 4: Evaluate \( f'(\frac{\pi}{4}) \) Next, we substitute \( x = \frac{\pi}{4} \) into the derivative: \[ f'\left(\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) \] ### Step 5: Calculate \( \sin(\frac{\pi}{4}) \) Now we find \( \sin(\frac{\pi}{4}) \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 6: Final calculation Putting it all together, we have: \[ f'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] Thus, the final answer is: \[ f'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \]

To find \( f'( \frac{\pi}{4} ) \) for the function \( f(x) = |\cos x| \), we will follow these steps: ### Step 1: Determine the value of \( \cos(\frac{\pi}{4}) \) First, we need to evaluate \( \cos(\frac{\pi}{4}) \): \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)= |cosxl, then f'((3pi)/4) equal to -

If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

If f(x)=|x|^(|sinx|) ,then f'((pi)/(4)) equals

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)