Home
Class 12
MATHS
For the curve sqrt(x) + sqrt(y) = 1, (dy...

For the curve `sqrt(x) + sqrt(y) = 1, (dy)/(dx)` at `(1/4,1/4)` is `"………."`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the curve \(\sqrt{x} + \sqrt{y} = 1\) at the point \((\frac{1}{4}, \frac{1}{4})\), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ \sqrt{x} + \sqrt{y} = 1 \] We will differentiate both sides with respect to \(x\). ### Step 2: Apply the chain rule Differentiating \(\sqrt{x}\) gives: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] For \(\sqrt{y}\), we apply the chain rule: \[ \frac{d}{dx}(\sqrt{y}) = \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} \] Thus, differentiating the entire equation gives: \[ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = 0 \] ### Step 3: Solve for \(\frac{dy}{dx}\) Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ \frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx} = -\frac{1}{2\sqrt{x}} \] Multiplying both sides by \(2\sqrt{y}\) to eliminate the fraction: \[ \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}} \] ### Step 4: Substitute the point \((\frac{1}{4}, \frac{1}{4})\) Now we substitute \(x = \frac{1}{4}\) and \(y = \frac{1}{4}\) into the derivative: \[ \frac{dy}{dx} = -\frac{\sqrt{\frac{1}{4}}}{\sqrt{\frac{1}{4}}} \] Calculating the square roots: \[ \frac{dy}{dx} = -\frac{\frac{1}{2}}{\frac{1}{2}} = -1 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at the point \((\frac{1}{4}, \frac{1}{4})\) is: \[ \frac{dy}{dx} = -1 \] ---

To find \(\frac{dy}{dx}\) for the curve \(\sqrt{x} + \sqrt{y} = 1\) at the point \((\frac{1}{4}, \frac{1}{4})\), we will follow these steps: ### Step 1: Differentiate the equation implicitly We start with the equation: \[ \sqrt{x} + \sqrt{y} = 1 \] We will differentiate both sides with respect to \(x\). ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|28 Videos
  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|22 Videos
  • DETERMINANTS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|11 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x/y)+sqrt(y/x)=1 , then dy/dx

If y=sqrt(x)+(1)/(sqrt(x)) , then (dy)/(dx) at x=1 is

If sqrt(x) + sqrt(y)=4, f i n d (dx/dy) a t (y = 1).

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

If x=sqrt(1-y^2) , then (dy)/(dx)=

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

"If "sqrt(x)+sqrt(y)=4," then find "(dy)/(dx).

If y=sqrt((1-x)/(1+x) then (dy)/(dx) equals

If y = sqrt(1-cosx)/(1+ cos x) find (dy)/(dx)

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .