Home
Class 12
MATHS
Area of the regionbounded by the curve y...

Area of the regionbounded by the curve `y = "cos" x` between `x = 0` and `x = pi` is

A

`2" sq units"`

B

`4" sq units"`

C

`3" sq units"`

D

`1" sq unit"`

Text Solution

Verified by Experts

The correct Answer is:
A

Required area enclosed by the curve `y=cosx, x=0" and " x=pi` is

`A=int_(0)^(pi//2)cosx dx +abs(int_(pi//2)^(pi)cosxdx)
`=[sin.pi/2-sin0]+abs(sin.pi/2-sinpi)`
`=1+1=2" sq units"`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer Type Questions|16 Videos
  • APPLICATION OF DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|10 Videos

Similar Questions

Explore conceptually related problems

Find the area of the region bounded by the curve y = sin x between x = 0 and x= 2pi .

Find the area bounded by the curve y = cos x between x = 0 and x=2pi .

The area of the region bounded by the curve y = "sin" x between the ordinates x=0 , x=pi/2 and the X-"axis" is

Find the area of that region bounded by the curve y="cos"x, X-axis, x=0 and x=pi .

The area of the region bounded by the curve y=x"sin"x, x-axis, x=0 and x=2pi is :

If f(x) = max {sin x, cos x,1/2}, then the area of the region bounded by the curves y =f(x), x-axis, Y-axis and x=(5pi)/3 is

Find the area of region by the curve y=sinx" between "x=0" and "x=2pi .

Statement-I: The sine and cosine curves intersect infinitely many tmes, bounding regions of equal areas. Statement-II : The area of the figure bounded by the curves y=cos x and y=sin x and the ordinates x = 0 and x=(pi)/(4) is sqrt(2)-1 sq. units. Which of the above statement is correct.

The area bounded by the curves y=cosx and y=sinx between the ordinates x=0 and x=(3pi)/2 is

The ratio of the areas bounded by y=cosx,y=cos2x between x=0 and x=pi//3 and the x-axis is

NCERT EXEMPLAR ENGLISH-APPLICATION OF INTEGRALS-Objective Type Questions
  1. The area of the region bounded by the curve y=sqrt(16-x^(2)) and X-axi...

    Text Solution

    |

  2. Find the area of the region in the first quadrant enclosed by the y-ax...

    Text Solution

    |

  3. Area of the regionbounded by the curve y = "cos" x between x = 0 and x...

    Text Solution

    |

  4. The area of the region bounded by parabola y^(2)=x and the straight li...

    Text Solution

    |

  5. The area of the region bounded by the curve y = "sin" x between the or...

    Text Solution

    |

  6. The area of the region bounded by the ellipse (x^(2))/25+y^(2)/16=1 is

    Text Solution

    |

  7. The area of the region by the circle x^(2)+y^(2)=1 is

    Text Solution

    |

  8. The area of the region bounded by the curve y = x + 1 and the lines x=...

    Text Solution

    |

  9. The area of the region bounded by the curve x=2y+3 and the lines y=1, ...

    Text Solution

    |

  10. The area of the region bounded by the Y-"axis" y = "cos" x and y = "si...

    Text Solution

    |

  11. Using integration, find the area bounded by the curve x^2=4y and the l...

    Text Solution

    |

  12. The area of the region bounded by the curve y=sqrt(16-x^(2)) and X-axi...

    Text Solution

    |

  13. Area of the region in the first quadrant exclosed by the X-axis, the l...

    Text Solution

    |

  14. Area of the regionbounded by the curve y = "cos" x between x = 0 and x...

    Text Solution

    |

  15. The area of the region bounded by parabola y^(2)=x and the straight li...

    Text Solution

    |

  16. The area of the region bounded by the curve y = "sin" x between the or...

    Text Solution

    |

  17. The area of the region bounded by the ellipse (x^(2))/25+y^(2)/16=1 is

    Text Solution

    |

  18. The area of the region by the circle x^(2)+y^(2)=1 is

    Text Solution

    |

  19. The area of the region bounded by the curve y = x + 1 and the lines x=...

    Text Solution

    |

  20. The area of the region bounded by the curve x=2y+3 and the lines y=1, ...

    Text Solution

    |