Home
Class 12
MATHS
If y(t) is a solution of (1+t)(dy)/(dt)-...

If `y(t)` is a solution of `(1+t)(dy)/(dt)-t y=1a n dy(0)=-1` then show that `y(1)=-1/2dot`

Text Solution

AI Generated Solution

To solve the differential equation given in the question, we will follow these steps: ### Step 1: Write the given differential equation The differential equation is given as: \[ (1+t)\frac{dy}{dt} - ty = 1 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If y(t) is a solution of (1+t)dy/dt-t y=1 and y(0)=-1 then y(1) is

The solution of (dy)/(dx)-y=1, y(0)=1 is given by

If x=a^(sin^-1 t) ,\ y=a^(cos^-1t) ,\ show that (dy)/(dx)=-y/x

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t) then show that, dy/dx=-y/x.

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x