Home
Class 12
MATHS
Solve: dy/dx = sin(x+y) + cos(x+y)...

Solve: `dy/dx = sin(x+y) + cos(x+y)`

Text Solution

AI Generated Solution

To solve the differential equation \(\frac{dy}{dx} = \sin(x+y) + \cos(x+y)\), we can follow these steps: ### Step 1: Substitute \( z = x + y \) Let \( z = x + y \). Then, we can differentiate both sides with respect to \( x \): \[ \frac{dz}{dx} = 1 + \frac{dy}{dx} \] From this, we can express \(\frac{dy}{dx}\): ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)=cos(x+y)

Solve the following differential equations. (dy)/(dx )= sin ( x+y) + cos ( x + y)

Solve (dy)/(dx)=cos(x+y)-sin(x+y) .

Solve: (dy)/(dx)+y=cos x-sinx

Solve (dy)/(dx)=sin^(2) (x+3y)+5

Solve (dx )/(dy) +x/y= sin y

Solve (dy)/(dx) + x sin 2y = x^(3) cos^(2) y

Find dy/dx if y=2 sin x - cos x

Solve: x(dy)/(dx)-y=x+1

Solve: (dy)/(dx)-2y=cos3x