The slope of the tangent at `(x , y)`
to a curve
passing through a point `(2,1)`
is `(x^2+y^2)/(2x y)`
, then the equation of the curve is
(a)
`( b ) (c)2(( d ) (e) (f) x^(( g )2( h ))( i )-( j ) y^(( k )2( l ))( m ) (n))=3x (o)`
(p)
(b) `( q ) (r)2(( s ) (t) (u) x^(( v )2( w ))( x )-( y ) y^(( z )2( a a ))( b b ) (cc))=6y (dd)`
(ee)
(c)
`( d ) (e) x(( f ) (g) (h) x^(( i )2( j ))( k )-( l ) y^(( m )2( n ))( o ) (p))=6( q )`
(r)
(d) `( s ) (t) x(( u ) (v) (w) x^(( x )2( y ))( z )+( a a ) y^(( b b )2( c c ))( d d ) (ee))=10 (ff)`
(gg)
The slope of the tangent at `(x , y)`
to a curve
passing through a point `(2,1)`
is `(x^2+y^2)/(2x y)`
, then the equation of the curve is
(a)
`( b ) (c)2(( d ) (e) (f) x^(( g )2( h ))( i )-( j ) y^(( k )2( l ))( m ) (n))=3x (o)`
(p)
(b) `( q ) (r)2(( s ) (t) (u) x^(( v )2( w ))( x )-( y ) y^(( z )2( a a ))( b b ) (cc))=6y (dd)`
(ee)
(c)
`( d ) (e) x(( f ) (g) (h) x^(( i )2( j ))( k )-( l ) y^(( m )2( n ))( o ) (p))=6( q )`
(r)
(d) `( s ) (t) x(( u ) (v) (w) x^(( x )2( y ))( z )+( a a ) y^(( b b )2( c c ))( d d ) (ee))=10 (ff)`
(gg)
Text Solution
Verified by Experts
It is given that, the slope of tanget to the curve at point (x, y) is `(x^(2)+y^(2))/(2xy)`.
`therefore" "((dy)/(dx))_"(x,y)"=(x^(2)+y^(2))/(2xy)`
`rArr" "(dy)/(dx)=(1)/(2)((x)/(y)+(y)/(x))" "` …(i)
which is homogeneous differential equation.
Put `" "y=vx`
`rArr" "(dy)/(dx)=v+x(dv)/(dx)`
On substituting these values in Eq. (i), we get
`" "v+x(dv)/(dx)=(1)/(2)((1)/(v)+v)`
`rArr" "v+x(dv)/(dx)=(1)/(2)((1+v^(2))/(v))`
`rArr" "x(dv)/(dx)=(1+v^(2))/(2v)-v`
`rArr" "x(dv)/(dx)=(1+v^(2)-2v^(2))/(2v)`
`rArr" "x(dv)/(dx)=(1-v^(2))/(2v)`
`rArr" "(2v)/(1-v^(2))dv=(dx)/(x)`
On integrating both sides, we get
`" "int(2v)/(1-v^(2))dv=int(dx)/(x)`
Put `1-v^(2)-t` in LHS, we get
`" "-2vdv=dt`
`rArr" "-int(dt)/(t)=int(dx)/(x)`
`rArr" "-logt=logx+logC`
`" "-log(1-v^(2))=logx+logC`
`rArr" "-log(1-(y^(2))/(x^(2)))=logx+logC`
`rArr" "-log((x^(2)-y^(2))/(x^(2)))=logx+logC`
`rArr" "log((x^(2))/(x^(2)-y^(2)))=logx+logC`
`rArr" "(x^(2))/(x^(2)-y^(2))=Cx" "` ...(ii)
Since, the curve passes through the point (2,1).
`therefore" "((2)^(2))/((2)^(2)-(1)^(2))=C(2)rArrC=(2)/(3)`
So, the required solution is `2(x^(2)-y^(2))=3x.`
`therefore" "((dy)/(dx))_"(x,y)"=(x^(2)+y^(2))/(2xy)`
`rArr" "(dy)/(dx)=(1)/(2)((x)/(y)+(y)/(x))" "` …(i)
which is homogeneous differential equation.
Put `" "y=vx`
`rArr" "(dy)/(dx)=v+x(dv)/(dx)`
On substituting these values in Eq. (i), we get
`" "v+x(dv)/(dx)=(1)/(2)((1)/(v)+v)`
`rArr" "v+x(dv)/(dx)=(1)/(2)((1+v^(2))/(v))`
`rArr" "x(dv)/(dx)=(1+v^(2))/(2v)-v`
`rArr" "x(dv)/(dx)=(1+v^(2)-2v^(2))/(2v)`
`rArr" "x(dv)/(dx)=(1-v^(2))/(2v)`
`rArr" "(2v)/(1-v^(2))dv=(dx)/(x)`
On integrating both sides, we get
`" "int(2v)/(1-v^(2))dv=int(dx)/(x)`
Put `1-v^(2)-t` in LHS, we get
`" "-2vdv=dt`
`rArr" "-int(dt)/(t)=int(dx)/(x)`
`rArr" "-logt=logx+logC`
`" "-log(1-v^(2))=logx+logC`
`rArr" "-log(1-(y^(2))/(x^(2)))=logx+logC`
`rArr" "-log((x^(2)-y^(2))/(x^(2)))=logx+logC`
`rArr" "log((x^(2))/(x^(2)-y^(2)))=logx+logC`
`rArr" "(x^(2))/(x^(2)-y^(2))=Cx" "` ...(ii)
Since, the curve passes through the point (2,1).
`therefore" "((2)^(2))/((2)^(2)-(1)^(2))=C(2)rArrC=(2)/(3)`
So, the required solution is `2(x^(2)-y^(2))=3x.`
Similar Questions
Explore conceptually related problems
The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is
The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is (a) ( b ) (c) y=( d ) (e)tan^(( f ) (g)-1( h ))( i )(( j ) (k)log(( l ) (m) (n) e/( o ) x (p) (q) (r))( s ))( t ) (u) (v) ( w ) (x) y=x (y) (z)tan^(( a a ) (bb)-1( c c ))( d d )(( e e ) (ff)log(( g g ) (hh) (ii) x/( j j ) e (kk) (ll) (mm))( n n ))( o o ) (pp) (qq) ( r r ) (ss) y=x (tt) (uu)tan^(( v v ) (ww)-1( x x ))( y y )(( z z ) (aaa)log(( b b b ) (ccc) (ddd) e/( e e e ) x (fff) (ggg) (hhh))( i i i ))( j j j ) (kkk) (d) none of these
The solution of the differential equation (x^2y^2-1)dy+2xy^3dx=0 is (a) ( b ) (c)1+( d ) x^(( e )2( f ))( g ) (h) y^(( i )2( j ))( k )=c x (l) (m) (b) ( n ) (o)1+( p ) x^(( q )2( r ))( s ) (t) y^(( u )2( v ))( w )=c y (x) (y) (c) ( d ) (e) y=0( f ) (g) (d) ( h ) (i) y=-( j )1/( k )(( l ) (m) x^(( n )2( o ))( p ))( q ) (r) (s) (t)
Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)
A curve passing through (2,3) and satisfying the differential equation int_0^x ty(t)dt=x^2y(x),(x >0) is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=13 (l) (m) (b) ( n ) (o) (p) y^(( q )2( r ))( s )=( t )9/( u )2( v ) (w) x (x) (y) (c) ( d ) (e) (f)(( g ) (h) x^(( i )2( j ))( k ))/( l )8( m ) (n)+( o )(( p ) (q) y^(( r )2( s ))( t ))/( u )(( v ) 18)( w ) (x)=1( y ) (z) (d) ( a a ) (bb) x y=6( c c ) (dd)
If slope of the tangent at the point (x, y) on the curve is (y-1)/(x^(2)+x) , then the equation of the curve passing through M(1, 0) is :
The differential equation of all non-horizontal lines in a plane is (a) ( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q) (r) (s) (b) ( t ) (u) (v)(( w ) (x) d^(( y )2( z ))( a a ) x)/( b b )(( c c ) d (dd) y^(( e e )2( f f ))( g g ))( h h ) (ii)=0( j j ) (kk) (c) ( d ) (e) (f)(( g ) dy)/( h )(( i ) dx)( j ) (k)=0( l ) (m) (d) ( n ) (o) (p)(( q ) dx)/( r )(( s ) dy)( t ) (u)=0( v ) (w)
Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these
Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these
The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (a) ( b ) (c) (d) x^(( e )2( f ))( g ) y+( h )(( i ) (j) x^(( k )3( l ))( m ) (n) y^(( o )3( p ))( q ))/( r )3( s ) (t)=c (u) (v) (b) ( w ) (x) x (y) y^(( z )2( a a ))( b b )+( c c )(( d d ) (ee) x^(( f f )3( g g ))( h h ) (ii) y^(( j j )3( k k ))( l l ))/( m m )3( n n ) (oo)=c (pp) (qq) (c) ( d ) (e) (f) x^(( g )2( h ))( i ) y+( j )(( k ) (l) x^(( m )4( n ))( o ) (p) y^(( q )4( r ))( s ))/( t )4( u ) (v)=c (w) (x) (d) None of these
Recommended Questions
- The slope of the tangent at (x , y) to a curve passing through a po...
Text Solution
|
- The slope of the tangent at (x , y) to a curve passing through a p...
Text Solution
|
- The slope of the tangent at (x,y) to a curve passing through (2,1) is ...
Text Solution
|
- If the slope of the tangent at (x,y) to a curve passing through the po...
Text Solution
|
- Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x...
Text Solution
|
- The slope of the tangent at (x , y) to a curve passing through a p...
Text Solution
|
- Differential equation of the family of circles touching the line y=...
Text Solution
|
- The solution of the differential equation x=1+x y(dy)/(dx)+(x^2y^2)/(...
Text Solution
|
- A curve passing through (2,3) and satisfying the differential equat...
Text Solution
|