Home
Class 12
MATHS
Solve x(dy)/(dx)=y(logy-logx+1)...

Solve `x(dy)/(dx)=y(logy-logx+1)`

Text Solution

AI Generated Solution

To solve the differential equation \( x \frac{dy}{dx} = y (\log y - \log x + 1) \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ x \frac{dy}{dx} = y (\log y - \log x + 1) \] We can simplify the right-hand side using the property of logarithms: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: (dy)/(dx)+y=1

Solve: x(dy)/(dx)-y=x+1

solve: (y-x)(dy)/(dx)=y

Solve : (dy)/(dx)=1-xy+y-x

Solve: xlogx(dy)/(dx)+y=2logx

Solve x^2((dy)/(dx))+y=1

Solve x^2((dy)/(dx))+y=1

Solve x(dy)/(dx) +2y = x^2logx

Solve (dy)/(dx)+(y)/(x)=log x.

Solve: x(dy)/(dx)=y+cos (1/x)