Home
Class 12
MATHS
If y=acos(logx)+bsin(logx), prove that ...

If `y=acos(logx)+bsin(logx),` prove that ` x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0`

Text Solution

Verified by Experts

`y = acos(logx)+bsin(logx)`
Let `logx = t =>1/xdx = dt=>dt/dx = 1/x`
Then, `y = acost+bsint`
`=>dy/dt = -asint+bcost`
`:.dy/dx = dy/dt*dt/dx = (-asint+bcost)1/x`
`=>xdy/dx = bcost-asint`
Differentiating w.r.t. `x`,
`=>x(d^2y)/dx^2+dy/dx = (-bsint-acost)dt/dx`
...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos

Similar Questions

Explore conceptually related problems

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=3cos(logx)+4sin(logx),\ then show that x^2(d^2\ y)/(dx^2)+x(dy)/(dx)+y=0

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0

(i) If y=asin(log x) then prove that x^(2)*(d^2y)/(dx^2)+x(dy)/(dx)+y=0 . (ii) If y=acos(log_(e)x)+bsin(log_(e)x) , then prove that x^2*(d^2y)/(dx^2)+x*dy/dx+y=0 .

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y="sin"(sinx),"prove that" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=log{x+ sqrt( x^2+a^2 )} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(dx)=0 .

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0