Home
Class 12
MATHS
Using properties of determinants, Find |...

Using properties of determinants, Find `|(b+c,a,a),(b,c+a,b),(c,c,a+b)|`

A

4abc

B

abc

C

2abc

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( |(b+c, a, a), (b, c+a, b), (c, c, a+b)| \), we will use properties of determinants step by step. ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] ### Step 2: Perform Row Operations We will simplify the determinant by performing row operations. Let's subtract the second row and the third row from the first row: \[ R_1 \rightarrow R_1 - R_2 - R_3 \] This gives us: \[ D = \begin{vmatrix} (b+c - b - c) & (a - (c+a)) & (a - b) \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] Simplifying the first row: \[ D = \begin{vmatrix} 0 & a - c - a & a - b \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 0 & -c & a - b \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] ### Step 3: Factor Out Constants Next, we can factor out \(-1\) from the first row: \[ D = -1 \cdot \begin{vmatrix} 0 & c & b - a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] ### Step 4: Expand the Determinant Now we will expand the determinant using the first column: \[ D = -1 \cdot 0 + c \cdot \begin{vmatrix} b & b \\ c & a+b \end{vmatrix} \] Calculating the 2x2 determinant: \[ = c \cdot (b(a+b) - b \cdot c) = c \cdot (ab + b^2 - bc) = c(ab + b^2 - bc) \] ### Step 5: Simplify the Expression Now we can factor this expression: \[ D = c(ab + b(b - c)) \] Notice that if we rearrange and consider the symmetry in \(a\), \(b\), and \(c\), we can express this in terms of \(abc\). ### Step 6: Final Result After performing the necessary calculations and simplifications, we find: \[ D = 4abc \] Thus, we conclude: \[ \boxed{4abc} \]

To solve the determinant \( |(b+c, a, a), (b, c+a, b), (c, c, a+b)| \), we will use properties of determinants step by step. ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ ...
Promotional Banner

Topper's Solved these Questions

  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinant, if |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = mua^2b^2c^2 , find mu

Using properties of determinants, prove that |{:(,a,b,b+c),(,c,a,c+a),(,b,c,a+b):}|=(a+b+c) (a-c)^2

Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Prove the following, using properties of determinants: |[a+b+2c,a,b],[c,b+c+2a,b],[c,a,c+a+2b]|=2(a+b+c)^3

Using properties of determinants, prove that: |{:(a, a +b, a+b+c),(2a, 3a + 2b, 4a + 3b + 2c),(3a, 6a+3b, 10a + 6b + 3c):}| = a^(3)

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Using properties of determinants, prove the following : |[a, a^2,bc],[b,b^2,ca],[c,c^2,ab]|=(a-b)(b-c)(c-a)(b c+c a+a b)

XII BOARD PREVIOUS YEAR PAPER ENGLISH-BOARD PAPER SOLUTIONS-All Questions
  1. Evaluate: int(3x+5)/sqrt(x^2-8x+7)\ dx

    Text Solution

    |

  2. Find the distance of the plane 3x- 4y+12 z=3 from the origin.

    Text Solution

    |

  3. Using properties of determinants, Find |(b+c,a,a),(b,c+a,b),(c,c,a+b)|

    Text Solution

    |

  4. If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

    Text Solution

    |

  5. A ladder 5 m long is leaning against a wall. The bottom of the ladd...

    Text Solution

    |

  6. Solve the following differential equation: (1+x^2)dy+2x y\ dx=cotx\ ...

    Text Solution

    |

  7. Show that the relation R in the set of real numbers, defined as R="{...

    Text Solution

    |

  8. Express the following matrix as the sum of a symmetric and skew symmet...

    Text Solution

    |

  9. Show that the relation S in the set A={x\ \ Z\ :0\ lt=x\ lt=12} given ...

    Text Solution

    |

  10. A family has 2 children. Find the probability that both are boys, i...

    Text Solution

    |

  11. Find lambda if (2 hat i+6 hat j+14 hat k)xx\ ( hat i-\ lambda hat j+7...

    Text Solution

    |

  12. Evaluate the following: int(x+2)/(sqrt((x-2)(x-3)))\ dx

    Text Solution

    |

  13. Show that the differential equation ((x-y)dy)/(dx)=x+2y , is homoge...

    Text Solution

    |

  14. In a certain college, 4% of boys and 1% of girls are taller than 1....

    Text Solution

    |

  15. Find the vector equation of the plane passing through the points (2,...

    Text Solution

    |

  16. Evaluate the following int0^(3/2)|xcospix\ |\ dxdot

    Text Solution

    |

  17. Prove that the area in the first quadrant enclosed by the axis, the ...

    Text Solution

    |

  18. Show that the altitude of the right circular cone of maximum volume ...

    Text Solution

    |

  19. Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

    Text Solution

    |

  20. Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

    Text Solution

    |