Home
Class 12
MATHS
If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 ...

If `sin^-1 x+sin^-1=(2pi)/3,` then `cos^-1 x cos^-1 y` is equal to

A

`(2pi)/(3)`

B

`(pi)/(3)`

C

`(pi)/(2)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1} x + \cos^{-1} y \) given that \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \). ### Step 1: Use the identity for inverse sine and cosine We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] and \[ \sin^{-1} y + \cos^{-1} y = \frac{\pi}{2} \] ### Step 2: Rearranging the identities From the above identities, we can express \( \cos^{-1} x \) and \( \cos^{-1} y \) in terms of \( \sin^{-1} x \) and \( \sin^{-1} y \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] \[ \cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y \] ### Step 3: Substitute into the expression Now, substituting these into the expression \( \cos^{-1} x + \cos^{-1} y \): \[ \cos^{-1} x + \cos^{-1} y = \left(\frac{\pi}{2} - \sin^{-1} x\right) + \left(\frac{\pi}{2} - \sin^{-1} y\right) \] \[ = \pi - (\sin^{-1} x + \sin^{-1} y) \] ### Step 4: Substitute the given value We know from the problem statement that \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \): \[ \cos^{-1} x + \cos^{-1} y = \pi - \frac{2\pi}{3} \] ### Step 5: Simplify the expression Now, simplifying the right side: \[ \pi - \frac{2\pi}{3} = \frac{3\pi}{3} - \frac{2\pi}{3} = \frac{\pi}{3} \] ### Final Answer Thus, the value of \( \cos^{-1} x + \cos^{-1} y \) is: \[ \frac{\pi}{3} \] ---

To solve the problem, we need to find the value of \( \cos^{-1} x + \cos^{-1} y \) given that \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \). ### Step 1: Use the identity for inverse sine and cosine We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] and ...
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Fill in the blanks|1 Videos
  • SAMPLE PAPER 2019

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise Fill in the blanks 14A|1 Videos
  • EXAM REVISION SERIES

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|19 Videos
  • XII Boards

    XII BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|255 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^(-1)x+2cos^(-1)x=(2pi)/3 , then find x.

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to: