Home
Class 10
MATHS
Prove the following identities: (tanA...

Prove the following identities: `(tanA)/(1-cotA)+(cotA)/(1-tanA)=1+tanA+cotA=1+secAcos e cA`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    X BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise SECTION-C|5 Videos

Similar Questions

Explore conceptually related problems

Prove the following identities: (cosA)/(1-tanA)+(sinA)/(1-cotA)=cosA+sinA

Prove the following identities: (cosA)/(1-tanA)+(sinA)/(1-cotA)=cosA+sinA

Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA".cosec"A

Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA" cosec"A

Prove the following identities: (cosA)/(1-sinA)+(sinA)/(1-cosA)+1 = (sinAcosA)/((1-sinA)(1-cosA) ((1+cotA+tanA)(sinA-cosA)/(sec^3A-cos e c^3A)=sin^2Acos^2A

Prove the following identities: 1/(cos e cA-cotA)-1/(sinA)=1/(sinA)-1/(cos e cA+cotA)

Prove that: (sinA)/(1+cotA) -(cosA)/(1+tanA)=sinA-cosA

Prove the following identities: (cotA+cos e cA-1)/(cotA-cos e cA+1)=(1+cosA)/(sinA)

Prove the trigonometric identities: 1/(secA+tanA)-1/(cosA)=1/(cosA)-1/(secA-tanA)

(cosA)/(1-tanA)+(sinA)/(1-cotA)=sinA+cosA

X BOARD PREVIOUS YEAR PAPER ENGLISH-X Boards-All Questions
  1. How many two–digit numbers are divisible by 3?

    Text Solution

    |

  2. In figure,a right triangle ABC,circumscribes a circle of radius r.If A...

    Text Solution

    |

  3. Prove the following identities: (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+t...

    Text Solution

    |

  4. Prove that the tangents drawn at the ends of a diameter of a circle...

    Text Solution

    |

  5. From a rectangular sheet of paper ABCD with AB=40CM and AD=28cm, a sem...

    Text Solution

    |

  6. A solid sphere of radius 10.5 cm is melted and recast into smaller ...

    Text Solution

    |

  7. Construct a triangle ABC in which BC = 8 cm, angle B = 45° and angle C...

    Text Solution

    |

  8. Find the value of k , if the point P (2,4) is equidistant from the poi...

    Text Solution

    |

  9. A card is drawn at random from a well shuffled pack of 52 playing card...

    Text Solution

    |

  10. Solve the following quadratic equation for xdot x^2-4a x-b^2+4a^2=0

    Text Solution

    |

  11. Find the sum of all multiples of 7 lying between 500 and 900.

    Text Solution

    |

  12. Point P divides the line segment joining the points A(2,1) and B(5,-8)...

    Text Solution

    |

  13. If R(x , y) is a point on the line segment joining the points P(a , b)...

    Text Solution

    |

  14. A circle is inscribed in a triangle PQR with PQ = 10 cm, QR = 8 cm and...

    Text Solution

    |

  15. In Figure , O is the centre of the circle with AC = 24 cm, AB = 7 cm a...

    Text Solution

    |

  16. A hemispherical bowl of internal radius 9 cm is full of water. Its con...

    Text Solution

    |

  17. The boundary of the shaded region in the given figure consists of thre...

    Text Solution

    |

  18. The angles of the depression of the top and bottom of the tower is see...

    Text Solution

    |

  19. Find the coordinates of a point P, which lies on the line segment join...

    Text Solution

    |

  20. If the points A(x , y),B(3,6)a n dC(-3,4) are collinear, show that x-3...

    Text Solution

    |