Home
Class 10
MATHS
Given that sin alpha = (sqrt(3))/(2) an...

Given that `sin alpha = (sqrt(3))/(2) and cos beta = 0` , then the value of `beta - alpha ` is

A

`0^(@)`

B

`90^(@)`

C

`60^(@)`

D

`30^(@)`

Text Solution

Verified by Experts

The correct Answer is:
d

`30^(@)`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    X BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise 18A|1 Videos
  • SAMPLE PAPER 2019

    X BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise 18B|1 Videos
  • CBSE BOARDS 2020

    X BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise QUESTION|41 Videos
  • X Boards

    X BOARD PREVIOUS YEAR PAPER ENGLISH|Exercise All Questions|481 Videos

Similar Questions

Explore conceptually related problems

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If alpha and beta are acute angles and sin alpha = (3)/(5) , sin beta = (8)/( 17), find the values of sin ( alpha + beta), cos (alpha pm beta), and tan ( alpha pm beta).

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan beta is

If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 sin gamma y = 0 , then the value of sin 3alpha + 8 sin 3beta + 27 sin 3gamma is

If cos alpha = (3)/(5) , cos beta = (4)/(5) , find the value of cos ""(( alpha - beta)/( 2)), assuming alpha and beta to be acute angles.

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

If 4 sin 27^(@)=sqrt(alpha)-sqrt(beta) , then the value of (alpha+beta-alpha beta+2)^(4) must be