Home
Class 10
MATHS
If the angle between two tangents drawn ...

If the angle between two tangents drawn from an external point ‘P’ to a circle of radius ‘r’ and centre O is `60^(@)`, then find the length of OP.

Text Solution

AI Generated Solution

To solve the problem, we need to find the length of OP given that the angle between the two tangents drawn from an external point P to a circle with radius r and center O is 60 degrees. ### Step-by-Step Solution: 1. **Understanding the Geometry**: - We have a circle with center O and radius r. - From an external point P, two tangents PA and PB are drawn to the points A and B on the circle. - The angle between the two tangents, ∠APB, is given as 60 degrees. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If the angle between two tangents drawn from an external point P to a circle of radius 'a' and centre O, is 60^(@), then find the length of OP.

Write True or False and justify your answer: If angle between two tangents drawn from a point P to a circle of radius a and centre O is 60^(@) then OP=asqrt3 .

Write true or false and state reason: If angle between two tangents drawn from a point P to a circle of radius a and centre O is 90^(@) then OP=asqrt2 .

Prove that the length of the tangents drawn from an external point to a circle are equal.

Prove that the length of the tangents drawn from an external point to a circle are equal.

Prove that the length of the tangents drawn from an external point to a circle are equal.

Prove that the length of the tangents drawn from an external point to a circle are equal.

Prove that the length of the tangents drawn from an external point to a circle are equal.

Prove that the length of the tangents drawn from an external point to a circle are equal.

Prove that the length of the tangents drawn from an external point to a circle are equal.