Home
Class 10
MATHS
Prove that : (sin^(4)theta- cos^(4) t...

Prove that :
`(sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that 1+cot^(2) theta = cosec^(2) theta

Prove that sin^(4)theta+2sin^(2)thetacos^(2)theta+cos^(4)theta=1

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

Prove that, sin^2 theta+ cosec^2 theta>=2

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta