Home
Class 11
MATHS
If 2^(x+y)=6^y and 3^(x-1)=2^(y+1), then...

If `2^(x+y)=6^y` and `3^(x-1)=2^(y+1),` then the value of `(log3-log2)(x-y)` is

A

1

B

`(log)_2 3- (log)_3 2`

C

`log(3/2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two equations given: 1. \( 2^{x+y} = 6^y \) 2. \( 3^{x-1} = 2^{y+1} \) We need to find the value of \( ( \log 3 - \log 2 )( x - y ) \). ### Step 1: Rewrite the first equation using logarithms Taking the logarithm (base 2) of both sides of the first equation: \[ \log_2(2^{x+y}) = \log_2(6^y) \] Using the property of logarithms \( \log_b(a^n) = n \log_b(a) \): \[ x + y = y \log_2(6) \] ### Step 2: Rewrite \( \log_2(6) \) We can express \( 6 \) as \( 2 \cdot 3 \): \[ \log_2(6) = \log_2(2 \cdot 3) = \log_2(2) + \log_2(3) = 1 + \log_2(3) \] Substituting this back into our equation gives: \[ x + y = y(1 + \log_2(3)) \] ### Step 3: Rearranging the first equation Rearranging the equation: \[ x + y = y + y \log_2(3) \] This simplifies to: \[ x = y \log_2(3) \] ### Step 4: Rewrite the second equation using logarithms Now, take the logarithm (base 2) of both sides of the second equation: \[ \log_2(3^{x-1}) = \log_2(2^{y+1}) \] Using the property of logarithms: \[ (x-1) \log_2(3) = (y+1) \log_2(2) \] Since \( \log_2(2) = 1 \): \[ (x-1) \log_2(3) = y + 1 \] ### Step 5: Rearranging the second equation Rearranging gives: \[ x \log_2(3) - \log_2(3) = y + 1 \] This simplifies to: \[ x \log_2(3) - y = \log_2(3) + 1 \] ### Step 6: Substitute \( x \) from the first equation Now substitute \( x = y \log_2(3) \) into the equation: \[ (y \log_2(3)) \log_2(3) - y = \log_2(3) + 1 \] This expands to: \[ y (\log_2(3))^2 - y = \log_2(3) + 1 \] ### Step 7: Factor out \( y \) Factoring out \( y \): \[ y \left( (\log_2(3))^2 - 1 \right) = \log_2(3) + 1 \] ### Step 8: Solve for \( y \) Thus: \[ y = \frac{\log_2(3) + 1}{(\log_2(3))^2 - 1} \] ### Step 9: Substitute \( y \) back to find \( x \) Now substitute \( y \) back into \( x = y \log_2(3) \): \[ x = \frac{(\log_2(3) + 1) \log_2(3)}{(\log_2(3))^2 - 1} \] ### Step 10: Find \( x - y \) Now, we need \( x - y \): \[ x - y = \frac{(\log_2(3) + 1) \log_2(3)}{(\log_2(3))^2 - 1} - \frac{\log_2(3) + 1}{(\log_2(3))^2 - 1} \] This simplifies to: \[ x - y = \frac{(\log_2(3) + 1)(\log_2(3) - 1)}{(\log_2(3))^2 - 1} \] ### Step 11: Calculate \( ( \log 3 - \log 2 )( x - y ) \) Now we can compute: \[ ( \log 3 - \log 2 )( x - y ) \] Substituting the values we found for \( x - y \): \[ ( \log 3 - \log 2 ) \cdot \frac{(\log_2(3) + 1)(\log_2(3) - 1)}{(\log_2(3))^2 - 1} \] This leads us to the final answer. ### Final Answer The final value of \( ( \log 3 - \log 2 )( x - y ) \) simplifies to \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos
  • PERMUTATIONS AND COMBINATIONS

    CENGAGE ENGLISH|Exercise All Questions|444 Videos

Similar Questions

Explore conceptually related problems

If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1) , then the value of (log 3 - log 2)//(x-y) is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

If log_(y) x + log_(x) y = 2, x^(2)+y = 12 , then the value of xy is

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

The ordered pair (x,y) satisfying the equation x^(2)=1+6 log_(4)y and y^(2)=2^(x)y+2^(2x+1) and (x_(1), y_(1)) and (x_(2), y_(2)) , then find the value of log_(2)|x_(1)x_(2)y_(1)y_(2)| .

The ordered pair (x,y) satisfying the equation x^(2)=1+6 log_(4)y and y^(2)=2^(x)y+2^(2x+1) and (x_(1), y_(1)) and (x_(2), y_(2)) , then find the value of log_(2)|x_(1)x_(2)y_(1)y_(2)| .

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

Suppose that log_(10)(x-2)+log_(10)y=0and sqrtx+sqrt(y-2)=sqrt(x+y). Then the value of (x+y) is

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

CENGAGE ENGLISH-LOGARITHM-All Questions
  1. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  2. The value of x satisfying the equation 3sqrt(5)^((log5) 5^(((log)5(l...

    Text Solution

    |

  3. If 2^(x+y)=6^y and 3^(x-1)=2^(y+1), then the value of (log3-log2)(x-y)...

    Text Solution

    |

  4. The value of 3^((log)4 5)-5^((log)4 3) is 0 (b) 1 (c) 2 (d) none of...

    Text Solution

    |

  5. If a^4b^5=1 then the value of loga(a^5b^4) equals

    Text Solution

    |

  6. If (log)2x+(log)x2=(10)/3=(log)2y+(log)y2a n dx!=y ,t h ex+y= 2 (b) 6...

    Text Solution

    |

  7. If (x+1)^((log)(10)(x+1))=100(x+1), then all the roots are positive re...

    Text Solution

    |

  8. if (log)y x+(log)x y=2,x^2+y=12 , the value of x y is 9 (b) 12 (c) ...

    Text Solution

    |

  9. If sqrt((log)2x)-0. 5=(log)2sqrt(x ,) then x equals odd integer (b)...

    Text Solution

    |

  10. Find the value of 81^((1//log5 3))+(27^(log9 36)) + 3^((4/(log7 9))

    Text Solution

    |

  11. Find the value of (1/(49))^(1+(log)7 2)+5^(-1(log)((1/5))(7))

    Text Solution

    |

  12. Prove that: 2^((sqrt((log)a4sqrt(a b)+(log)b4sqrt(a b))-sqrt((log)a4sq...

    Text Solution

    |

  13. Prove that (2^((log)2 1/4x)-3^((log)(27)(x^2+1)^3)-2x) /(7^(4(log)(49...

    Text Solution

    |

  14. Solve (log)4 8+(log)4(x+3)-(log)4(x-1)=2.

    Text Solution

    |

  15. Which of the following pairs of expression are defined for the same se...

    Text Solution

    |

  16. Solve (log)2(3x-2)=(log)(1/2)x

    Text Solution

    |

  17. Solve log(-x)=2log(x+1)dot

    Text Solution

    |

  18. Solve: (log)2(4.3^x-6)-(log)2(9^x-6)=1.

    Text Solution

    |

  19. Solve 2^(x+2)27^(x//(x-1))=9

    Text Solution

    |

  20. Suppose x , y ,z=0 and are not equal to 1 and logx+logy+logz=0. Find t...

    Text Solution

    |