Home
Class 11
MATHS
Let n be a positive integer such that s...

Let `n` be a positive integer such that `sinpi/(2n)+cospi/(2n)=(sqrt(n))/2dot` Then `6lt=nlt=8` (b) `4 ltnle8` c) `4lenle8` d) `4ltnlt8`

Text Solution

AI Generated Solution

To solve the equation \( \sin\left(\frac{\pi}{2n}\right) + \cos\left(\frac{\pi}{2n}\right) = \frac{\sqrt{n}}{2} \), we will follow these steps: ### Step 1: Square both sides We start by squaring both sides of the equation to eliminate the square root: \[ \left(\sin\left(\frac{\pi}{2n}\right) + \cos\left(\frac{\pi}{2n}\right)\right)^2 = \left(\frac{\sqrt{n}}{2}\right)^2 \] This gives us: ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise All Questions|491 Videos

Similar Questions

Explore conceptually related problems

Let n be a positive integer such that sin (pi/(2n))+cos (pi/(2n))= sqrt(n)/2 then (A) n=6 (B) n=1,2,3,….8 (C) n=5 (D) none of these

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)

Determine a positive integer n such that int_0^(pi/2)x^nsinx dx=3/4(pi^2-8)

If n is positive integer show that 9^n+7 is divisible 8

If n is an odd positive integer, show that (n^2-1) is divisible by 8.

If n is an odd positive integer, show that (n^2-1) is divisible by 8.

The least positive integer n such that ((2i)/(1+i))^n is a positive integer is a. 16 b. 8 c. 4 d. 2

If n and p are positive integers such that 8(2^(p))=4^(n) , what is n in terms of p?

If m , n are positive integers and m+nsqrt(2)=sqrt(41+24sqrt(2)) , then (m+n) is equal to (a) 5 (b) 6 (c) 7 (d) 8

If n is any positive integer , show that 2^(3n +3) -7n - 8 is divisible by 49 .

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS-All Questions
  1. Let theta in ( 0, pi/4) and t1 = (tan theta)^(tan theta),t2 = (tan th...

    Text Solution

    |

  2. Sum of roots of the equation x^4-2x^2sin^2(pix/2)+1=0 is 0 (b) 2 ...

    Text Solution

    |

  3. Let n be a positive integer such that sinpi/(2n)+cospi/(2n)=(sqrt(n))...

    Text Solution

    |

  4. Let O be the circumcenter, H be the orthocentre, I be the incenter, an...

    Text Solution

    |

  5. If s e c^2theta=(4x y)/((x+y)^2) is true if and only if (a)x+y!=0 (b)...

    Text Solution

    |

  6. Prove that in a A B C ,sin^2A+sin^2B+sin^2C<=9/4dot

    Text Solution

    |

  7. The number of solution of the pair of equations 2sin^2theta-cos2theta=...

    Text Solution

    |

  8. The rational number which equals the number 2. 357 with recurring de...

    Text Solution

    |

  9. If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 then prove that (cos^4B)/(cos...

    Text Solution

    |

  10. Prove that r1+r2+r3-r=4R

    Text Solution

    |

  11. Number of solution of equation 2sinx/2cos^2x-2sinx/2sin^2x=cos^2x-sin^...

    Text Solution

    |

  12. If cot(theta-alpha),3cottheta,"cot"(theta+alpha) are in A.P. and theta...

    Text Solution

    |

  13. If x=sectheta-tanthetaa n dy=cos e ctheta+cottheta, then prove that x...

    Text Solution

    |

  14. If A >0,B >0a n dA+B=pi/3, the maximum value of tanAtanB is

    Text Solution

    |

  15. Prove that cosA+cosB+cosC=1+r/R

    Text Solution

    |

  16. denote the positive solution of the equation 3+3costheta=2sin^2thetado...

    Text Solution

    |

  17. If (sec^4theta)/a+(tan^4theta)/b=1/(a+b), then prove that |b|lt=|a| .

    Text Solution

    |

  18. Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={...

    Text Solution

    |

  19. Prove that ("a c o s"A+b cosB+c cosC)/(a+b+c)=r/Rdot

    Text Solution

    |

  20. Find the number of solution of the equation 1+e^(cot^2x)=sqrt(2|sinx|-...

    Text Solution

    |