Home
Class 11
MATHS
Let f(x)=a bsinx+bsqrt(1-a^2)cosx+c , w...

Let `f(x)=a bsinx+bsqrt(1-a^2)cosx+c ,` where `|a|<<1,b>>0` then (a) maximum value of `f(x)` is b if `c=0` (b) difference of maximum and minimum values of `f(x)` is `2b` (c) `f(x)=c` if x=`-cos^(-1)a` (d)`f(x)=c` if x=`cos^(-1)a`

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise All Questions|491 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=ab sin x+bsqrt(1-a^(2))cosx+c , where |a|lt1,bgt0 then

Let f(x)=x+(1)/(x),xne0. Discuss the maximum and minimum value of f(x).

Let f(x) = Maximum {sin x, cos x} AA x in R . minimum value of f (x) is

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

Let f (x) =x ^(2) +bx+c, minimum value of f (x) is -5, then abosolute value of the difference of the roots of f (x) is :

If f(x) = x^(3) + a x^(2) + b x + c has a maximum at x = -1 and minimum at x = 3. Find a + b.

For the function f(x)=x+1/x x=1 is a point of maximum (b) x=-1 is a point of minimum (c) maximum value > minimum value (d) maximum value < minimum value

Let f(x)=(1+b^2)x^2+2b x+1 and let m(b) be the minimum value of f(x)dot As b varies, the range of m(b) is (a) [0,} b. (0,1/2) c. 1/2,1 d. (0,1]

Let f(x)={(sinx^2)/x x!=0 0x=0, then f^(prime)(0^+)+f^(prime)(0^-) has the value equal to (a) 0 (b) 1 (c) 2 (d) None of these

Let f(x) = a x^2 + bx + c , where a, b, c in R, a!=0 . Suppose |f(x)| leq1, x in [0,1] , then

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS-All Questions
  1. In A B C ,if a=10 and bcotB+ c cotC=2(r+R) then the maximum area of ...

    Text Solution

    |

  2. Which of the following set of values of x satisfies the equation 2^(2...

    Text Solution

    |

  3. Let f(x)=a bsinx+bsqrt(1-a^2)cosx+c , where |a|<<1,b>>0 then (a) ma...

    Text Solution

    |

  4. A variable triangle A B C is circumscribed about a fixed circle of uni...

    Text Solution

    |

  5. Let the sum of all x in the interval [0, 2pi] such that 3 cot^(2) x+8 ...

    Text Solution

    |

  6. Let P(k)=(1+cos(pi/(4k))) (1+cos(((2k-1)pi)/(4k))) (1+cos(((2k+1)pi)/...

    Text Solution

    |

  7. The sides of a triangle are x^2+x+1,2x+1,a n dx^2-1 . Prove that the g...

    Text Solution

    |

  8. Find the values of theta in the interval (-pi/2,pi/2) satisfying the e...

    Text Solution

    |

  9. ABC is a triangle such that sin(2A+B)=sin(C-A)=-sin(B+2C)=1/2. If A,B...

    Text Solution

    |

  10. Let a, b and c be the three sides of a triangle, then prove that the e...

    Text Solution

    |

  11. Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sq...

    Text Solution

    |

  12. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for thet...

    Text Solution

    |

  13. In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40...

    Text Solution

    |

  14. If A=sin45^0+cos45^0a n d B=sin44^0+cos44^0, then (a)A>B (b) A=B

    Text Solution

    |

  15. If a , b in [0,2pi] and the equation x^2+4+3sin(a x+b)-2x=0 has at l...

    Text Solution

    |

  16. Let alt=blt=c be the lengths of the sides of a triangle. If a^2+b^2 &...

    Text Solution

    |

  17. Show that 4sin27^0=(5+sqrt(5))^(1/2)-(3-sqrt(5))^(1/2)

    Text Solution

    |

  18. The sum of all roots of sin(pi(log)3(1/x))=0 in (0,2pi) is 3/2 (b) 4 ...

    Text Solution

    |

  19. Three parallel chords of a circle have lengths 2,3,4 units and subtend...

    Text Solution

    |

  20. Prove that cos36^0cos72^0cos108^0cos144^0=1/(16)dot

    Text Solution

    |