Home
Class 11
MATHS
In any triangle ABC, prove that sin^3Aco...

In any triangle ABC, prove that `sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)`=`3sinAsinBsinC`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise All Questions|491 Videos

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that: a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3a b c

In a DeltaA B C ,\ prove that , sin^3Acos(B-C)+sin^3B cos(C-A)+sin^3\ C cos(A-B) = 3\ sin A\ sin B \ sin C

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In any triangle A B C , prove that: acos((B-C)/2)=(b+c)sin(A/2)

In any triangle A B C , prove that: \ a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

In a DeltaABC , prove that : sin3A sin(B-C)+sin3B sin(C-A) + sin3C sin (A-B)=0 .

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

In any triangle ABC, prove that a^(3) cos(B - C) + b^(3) cos (C - A) + c^(3) cos (A - B) = 3 abc

In any triangle A B C prove that: sin((B-C)/2)=((b-c)/a)cosA/2

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)