Home
Class 12
MATHS
Find x satisfying [tan^(-1)x]+[cot^(-1)x...

Find `x` satisfying `[tan^(-1)x]+[cot^(-1)x]=2,` where `[.]` represents the greatest integer function.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Draw the graph of f(x)=[cot^(-1)x]," where "[*] represents the greatest integer funtion.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: [("lim")_(xrarr0)(tan^(-1)x)/x], where [.]represent the greatest integer function

Draw the graph of f(x)=[tan^(-1)x]," where "[*]" represents the greatest integer function".

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

Draw the graph of |y|=[x] , where [.] represents the greatest integer function.