Home
Class 12
MATHS
If sin^(-1) x(1) + sin^(-1) x(2) + .... ...

If `sin^(-1) x_(1) + sin^(-1) x_(2) + .... + sin^(-1) x_(n) le - (n pi)/(2) , n in N, n = 2m + 1, m ge 1`, then find the value of `(x_(1)^(1) + x_(3)^(3) + x_(5)^(5) + .... (m + 1) " terms")/(x_(2)^(2) + x_(4)^(4) + x_(6)^(6)+ ... m " terms")`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x_1+sin^(-1)x_2++sin^(-1)x_nlt==(npi)/2,n in N ,n=2m+1, mgeq1, then find the value of (x1 1+x3 3+x5 5+(m+1)t e r m s)/(x2 2+x4 4+x6 6+ mt e r m s)

If Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi , then find the value of Sigma_( i = 1)^( 2n) x_(i) .

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

If x = sqrt((n-1)/(n+1)) , find the value of (x/(x-1))^2+(x/(x+1))^2

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

The term independent of x in (1+x)^m (1+1/x)^n is

The term independent of x in (1+x)^m (1+1/x)^n is

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

Sum of the series 1+(1+2)+(1+2+3)+(1+2+3+4)+... to n terms be 1/m n(n+1)[(2n+1)/k+1] then find the value of k+m