Home
Class 12
MATHS
The number of solutions of "cos"(2sin^(-...

The number of solutions of `"cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c^(-1)x))))+1=0` where `x >0` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of solution of the equation "cos"(cos^(-1)x)=cos e c(cos e c^(-1)x)dot

sin^-1(cos x)+tan ^-1(cot x)

The number of solution of sin{sin^(-1)(log_(1//2)x)}+2|cos{sin^(-1)(x/2-3/2)}|=0 is

The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(-1)x))),w h e r ex in (0,1), is equal to (a) 0 (b) 1 (c) -1 (d) none of these

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x)i s//a r e____

Number of solutions of equation sin(cos^(-1)(tan(sec^(-1)x)))=sqrt(1+x)i s//a r e____

the number of solutions of cos^(- 1)(1-x)+mcos^(- 1)x=(npi)/2 where mgt0, nleq0

Solve: sin[2\ cos^(-1){cot(2\ tan^(-1)x)}]=0

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

Prove that: cos e c(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2), where a in [0,1]