Home
Class 12
MATHS
The value of cos^(-1)sqrt(2/3)-cos^(-1)(...

The value of `cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3)))` is equal to (A) `pi/3` (B) `pi/4` (C) `pi/2` (D) `pi/6`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) pi (B) -pi/2 (C) 0 (D) 2sqrt(3)

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The value of sin^(-1)(3/(sqrt(73)))+cos^(-1)((11)/(sqrt(146)))+cot^(-1)sqrt(3) is (A) (5pi)/(12) (B) (17pi)/(12) (C) (7pi)/(12) (D) None of these

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2

The principal value of sin^(-1)((sqrt(3))/(2))+cos^(-1)(cos((pi)/(6))) , is :

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to