Home
Class 12
MATHS
Solve the equation tan^(-1)((x+1)/(x-1))...

Solve the equation `tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1)) is :

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equation: "tan"^(-1) (1-x)/(1+x)= (1)/(2) tan^(-1)x

Solve the equations. tan^(-1)(1-x)/(1+x)=1/2tan^(-1)x ,(x >0)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4