Home
Class 12
MATHS
f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-...

`f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x` are identical functions if (A)`x in R` (B) `x >0` (C) `x in [-1,1]` (D) `x in [0,1]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=tan^(-1)x+tan^(-1)(1/x);g(x)=sin^(-1)x+cos^(-1)x are identical functions if x in R (b) x >0 (c) x in [-1,1] (d) x in [0,1]

tan^(-1) ((1-cos x)/(sin x))

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

If the function f(x)=sin^(-1)x+cos^(-1)x and g(x) are identical, then g(x) can be equal to

If the range of f(x)=tan^(1)x+2sin^(-1)x+cos^(-1)x is [a, b] , then

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

f(x)=2x-tan^(-1)x-log{x+sqrt(x^2+1)} is monotonically increasing when (a) x >0 (b) x<0 (c) x in R (d) x in R-{0}

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)