Home
Class 12
MATHS
If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, the...

If `sin^(-1)a+sin^(-1)b+sin^(-1)c=pi,` then the value of `asqrt((1-a^2))+bsqrt((1-b^2))+csqrt((1-c^2))` will be (A) `2a b c` (B) `a b c` (C) `1/2a b c` (D) `1/3a b c`

Text Solution

AI Generated Solution

To solve the problem, we start with the equation given: \[ \sin^{-1} a + \sin^{-1} b + \sin^{-1} c = \pi \] ### Step 1: Set Variables Let: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2)) will be 2a b c (b) a b c (c) 1/2a b c (d) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2)) will be 2a b c (b) a b c (c) 1/2a b c (d) 1/3a b c

sin(pi/3-sin^(-1)(-1/2)) is equal to (A) 1/2 (B) 1/3 (C) 1/4 (D) 1

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

If in A B C ,A C is double of A B , then the value of (cot(A/2))(cot((B-C)/2)) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((1)/(a)+(1)/(b)-(1)/(c )) is equal to