Home
Class 12
MATHS
If asin^(-1)x-bcos^(-1)x=c , then asin^...

If `asin^(-1)x-bcos^(-1)x=c ,` then `asin^(-1)x+bcos^(-1)x` is equal to (a)`0 `(b) `(pia b+c(b-a))/(a+b)` (c)`pi/2` (d) `(pia b+c(a-b))/(a+b)`

Text Solution

AI Generated Solution

To solve the equation given in the problem, we start with the equation: \[ A \sin^{-1} x - B \cos^{-1} x = C \] We need to find the value of: \[ A \sin^{-1} x + B \cos^{-1} x \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lf asin^-1 x -bcos^-1 x=c, then asin^-1 x +bcos^-1 equal to

If lim_(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2 , then (a,b) is equal to

If sin^(-1)((2a)/(1+a^2))+sin^(-1)((2b)/(1+b^2))=2tan^(-1)x , then x is equal to [a , b , in (0,1)] (a) (a-b)/(1+a b) (b) b/(1+a b) (c) b/(1+a b) (d) (a+b)/(1-a b)

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

If tantheta=a/b ,then bcos2theta+asin2theta is equal to (a) a (b) b (c) a/b (d) b/a

If asin^(2)theta+bcos^(2)theta=c , then prove that tan^(2)theta=(c-b)/(a-c)

(lim)_(x->1)(sinpix)/(x-1) is equal to a. -pi b . pi c. -1/pi d. 1/pi

If asinx+bcos(x+theta)+bcos(x-theta)=d , then the minimum value of |costheta| is equal to (a) 1/(2|b|)sqrt(d^2-a^2) (b) 1/(2|a|)sqrt(d^2-a^2) (c) 1/(2|d|)sqrt(d^2-a^2) (d) none of these

If int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=asin2x+C , then a= -1//2 (b) 1//2 (c) -1 (d) 1

If x_1 and x_2 are two distinct roots of the equation acosx+bsinx=c , then tan((x_1+x_2)/2) is equal to (a) a/b (b) b/a (c) c/a (d) a/c