Home
Class 12
MATHS
The number of integer x satisfying sin^(...

The number of integer `x` satisfying `sin^(-1) |x -2| + cos^(-1) (1 -|3 -x|) = (pi)/(2)` is

Text Solution

Verified by Experts

`sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/2`
`alpha=beta`
`|x-2|=1-|3-x|`
`|x-2|+|3-x|=1|(x-2)+(3-x)|`
`(x-2)(3-x)>=0`
`2<=x<=3`
Option B is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of integers satisfying log_((1)/(x))((2(x-2))/((x+1)(x-5)))ge 1 is

The number of solutions of the equation 1 +sin^(4) x = cos ^(2) 3x, x in [-(5pi)/(2),(5pi)/(2)] is

The number of integers in the range of 3 sin^(2)x+3sin x cos x+7cos^(2)x is