Home
Class 12
MATHS
Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2...

Solve `sin^(-1)(1-x)-2sin^(-1)x=pi/2`

Text Solution

AI Generated Solution

To solve the equation \( \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Substitute \( \sin^{-1}(x) \) Let \( \sin^{-1}(x) = y \). Then, we have: \[ x = \sin(y) \] Substituting this into the equation gives: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2) then x = ?

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)