Home
Class 12
MATHS
Find tan^(-1)x/(sqrt(a^2-x^2)) in terms ...

Find `tan^(-1)x/(sqrt(a^2-x^2))` in terms of `sin^(-1)` where `x in (0, a)dot`

Text Solution

AI Generated Solution

To find \(\tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right)\) in terms of \(\sin^{-1}\), we can follow these steps: ### Step 1: Set up the equation Let \[ \theta = \tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) \] This implies that ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

Write each of the following in the simplest form: tan^(-1){x/(a+sqrt(a^2-x^2))} where -a < x < a (ii) sin^(-1){(x+sqrt(1-x^2))/(sqrt(2))} , -1/2 < x < 1/(sqrt(2))

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find the domain of f(x)=sin^(-1)((x^2)/2)dot